RESEARCH

Exploratory Award

Four teachers working on a problem

Exploratory Research in Mathematics Education Award

Request for Proposals for Funding by CPM Educational Program

Details and Submission Guidelines

Submission Deadline:  June 1 at 11:59 pm PST

Award Duration: 1-2 Years

Number of Awards Available:

Submission:

Applications should be submitted in pdf form by the deadline using the “Submit a Proposal” button at the top of this page. Late proposals will not be accepted. Please send questions to research@cpm.org

Template: Please use this template for your proposal: CPM RFP Template_Force Copy

Decision Announced: October

Funding Cap: $50,000

Applicant Qualifications: Applicants must be educational researchers with doctoral degrees in mathematics education (or a related field) employed by either a university or research organization.
Disclaimer: CPM reserves the right not to select an awardee if the proposals received are of insufficient quality or are not of interest to CPM, or if circumstances affecting CPM make it against CPM’s best interests to fund research. 

OVERVIEW

CPM Educational Program (“CPM”, https://cpm.org/who-are-we) is a California nonprofit 501(c)(3) corporation dedicated to improving grades 6-12 mathematics curriculum and instruction. Therefore, one of the goals of CPM is to support research on problem-based mathematics learning, as well as on the strengths and limitations of particular designs for professional learning around instruction aimed towards such learning. To this end, CPM offers award opportunities to fund educational research that will contribute to the understanding of how to improve mathematics teaching and learning in grades 6-12 in the United States. These awards support research that build theory, develop methodological tools, and establish knowledge around four key features of secondary mathematics education: curricular materials, teaching, learning, and/or professional learning. 

CPM’S INTEREST IN MATHEMATICS EDUCATION RESEARCH

CPM wishes to fund research that serves the wider mathematics education community by leading to the development of theory and the improvement of practice. CPM encourages research proposals that consider important educational questions that can inform mathematics education in areas such as curriculum design, teacher education and professional learning, and ecological features that support teacher or student learning. All funded research proposals will (a) be consistent with the mission and support the vision of CPM, (b) offer insight into ways to improve mathematics teaching and learning at the secondary level, and (c) demonstrate the potential to lead to publishable results to support the broader mathematics education research field. Examples of topics relevant to this call for proposals include but are not limited to:

  1. Fostering teacher learning and instructional change, such as through (a) virtual coaching, (b) virtual professional learning events, or (c) the development of tools that support teacher learning
  2. Supports designed for students who have struggled to develop long-term positive relationships with school mathematics
  3. Effective ways to use technology to support students’ learning, whether of particular topics or in the development of productive mathematical dispositions (not whether or not a particular technology changed test scores)
  4. Community math activities, such as at family math nights to educate parents on the mathematics their children will be learning
  5. Anti-racist practices for 6-12 mathematics education and teacher professional learning

Research questions do not need to focus centrally on CPM or be solely about CPM, but all proposals should make clear how CPM materials or professional learning are involved and a good fit for the project’s goals. Research about textbook content alone can focus on student or teacher versions of curriculum and should involve the most recent version of textbook materials.

All proposed project must include at least one deliverable that supports the practice of mathematics education. Examples include but are not limited to frameworks for curriculum design, teacher observation tools, surveys, and design principles for professional learning workshops. CPM will have the right to use deliverables to support the teachers and students who use CPM materials and professional learning

Because of the paucity of video available from collaborative, problem-based mathematics classrooms at middle- and high-school levels, studies that can increase the number of video cases usable in teacher education and professional learning are highly encouraged, not required.

Research proposals to evaluate curricula will not be considered. For example, a research question such as, Do students persevere more in problem solving in CPM classrooms compared to other classrooms?, will not be considered for funding as such questions are not designed to produce findings useful for improving mathematics education outside of CPM contexts.

Proposals that evidence or are likely to propagate a deficit perspective of teachers will not be considered for funding.

APPLICANT REQUIREMENTS

Proposed research must come from institutions or organizations (not individuals) supporting educational research in the United States, have a single Principal Investigator (PI) with a doctorate in mathematics education or in an equivalent field, and can have up to two co-PIs. The institution(s) or organizations can contract with other institutions (for example, if one of the co-PIs works at a different institution). CPM will communicate with and fund the primary institution as the institute responsible for the study.

All PIs and co-PIs on projects funded by CPM must be certified for research on human subjects, and, if awarded funding, receive and furnish evidence for IRB approval prior to starting the research.

PROPOSAL NARRATIVE REQUIREMENTS

Proposals that do not follow these formatting guidelines will be disqualified. Proposal narratives are limited to 10 pages with single-spaced, 12-point Times New Roman font, and 1-inch margins. Proposal narratives and must, at minimum, contain the following components: Research Question(s), Theoretical Framework, Research Design, Deliverables, Research Timeline, Dissemination Plan. Proposals may also include up to 5 pages total of appendices (beyond the narrative page limit) that provide supplementary tools or protocols pertaining to the proposed project, such as sample data collection instruments, tables of instructional materials, sample modified tasks, technical specifications, etc. Appendices may not be used to extend the space needed for the required elements of the proposal narrative (e.g., do not use appendices to extend the text related to the theoretical framework, research questions, etc.).

BUDGET REQUIREMENTS

A budget table and budget justification are required. Budgeted expenses must be clearly linked to research goals, including course buyout information (must be warranted by study design), participant honorariums (note that CPM expects the time and participation of any teachers to be respected and compensated appropriately), and any relevant and necessary equipment or supplies. 

CPM textbook materials can be included in the proposed budget as needed, or an eBook license can be provided free of charge for awardees. Proposal authors who are not yet familiar with CPM are strongly encouraged to contact research@cpm.org to access relevant information regarding CPM curricular materials, professional learning, coaching, and/or classroom implementation.

The budget must include funding for travel to and from the annual CPM Teacher Conference (held in California, typically in February) for at least the Primary Investigator in order to present emerging findings in a manner appropriate for a teacher audience. This travel will occur the year following the grant’s conclusion.  

Eligible expenses for travel to conferences (beyond the CPM annual conference) are limited to research conferences at which the proposed research results are presented. The total travel budget (beyond the CPM annual conference) is limited to $2000 per year.

As a nonprofit organization, CPM is governed by its Board of Directors and can only accept budgets that include a maximum of 10% in indirect costs. Budgetary limits are inclusive of indirect costs.

Budgets must include line items for projected equipment purchases. 

The following template must be used for the budget: CPM Grants Budget Template.

OTHER PROPOSAL REQUIREMENTS

In addition, proposals must include the following elements (beyond the narrative page limit):

  • A one-page title page with project title; requested amount; names and institutional affiliations of PI, and any co-PIs, with contact information including phone numbers and emails; institution of research; start and end dates; and a brief summary of the proposed study limited to 200 words. This cover page should also clearly indicate which type of award is being proposed, a CPM Dissertation Fellowship Award, an Exploratory Research Grant, or an Extensive Research Grant
  • References for citations within the narrative.
  • Biographical outline (1 page for each investigator, including the PI and any co-PIs), including education, a list of relevant publications, information about teaching experience that supports this research, and prior experience with CPM. Also include information on current and previous grants and a paragraph on broad research interests. For CPM Dissertation Fellowship Awards, a biographical outline of the dissertation chair or director must also be submitted.
  • Submit proposals as a single pdf document by using the “Submit a Proposal” button at the top of this page. Please have your pages in this order: Title page, Proposal narrative, References, Budget table and justification, Biographical outline(s), and Appendices.
  • Indicate whether permission for the study by schools or districts has already been granted. While pre-approval is not a requirement, proposals must indicate what progress has been made toward identifying and securing permission from participant schools and districts.
  • If applicable, include a list of which CPM textbook(s) will be included in the study with title and year of publication. List should indicate whether teacher and/or student versions will be used. 

REVIEW PROCESS

Proposals will be reviewed by a series of sub-committees composed of established and early career scholars employed by universities rather than CPM, as well as CPM teacher leaders or other CPM employees whose daily work is closely tied to the practical work of teaching. The review process is rigorous and attends to each of the above areas in detail, including how each section supports the overall goal of the proposed research and the ways in which the proposed research will contribute to existing research. Please be sure to attend to each area carefully so as to construct a coherent proposal, while also attending to page limits and feasibility of research within the timeline and budget. Review categories include:

  • Alignment with the mission of CPM
  • Relevance to CPM, regardless of whether or not the project is set in a CPM context
  • Improvements in educational practice for participants
  • Benefits stakeholders outside of the research context
  • Clear and significant research questions
  • Coherence and detail within and across the sections of this proposal
  • Feasibility
  • Plan for dissemination of research findings
  • Qualifications of the PI and other project personnel
  • Appropriateness of the budget

ADDITIONAL AWARD CONDITIONS

  • The official start and end dates of funded projects, although indicated on proposals, will ultimately be mutually agreed upon by awardees and CPM. Funds will not be delivered until CPM is satisfied with project dates that align with both CPM and researcher needs.
  • The PI must present at the Annual CPM Teacher Conference (held in California, typically in February) to support the learning of teachers and mathematics education leaders the year after the project concludes. This presentation must be in person and be accounted for in the budget. Presentation slides and plans must be emailed to research@cpm.org one month in advance. In addition, all awardees will be required to attend a session to share their research and network with other awardees. 
  • Awardees are expected to agree not to accept any other grant, fellowship, or award that provides duplicate benefits supporting the same aspect of the proposed research project.
  • Awardees must file progress reports annually on January 15 and July 15. Progress reports include information about project status, dilemmas encountered, any dissemination activities, and emerging research findings and must follow the CPM Research Awards Progress Report Template. Reports should be sent via email to research@cpm.org.
  • PIs and co-PIs must attend every other month meetings with CPM’s research faculty and other awardees to share their progress and dilemmas and engage in collaboration. 
  • Before the award is disbursed, awardees must provide CPM with a headshot and biographic sketch relating to the proposed research, along with their project’s abstract, to be posted on a webpage for CPM’s Research Grants Program. 
  • During the funding period, awardees will share in-progress findings with CPM upon request, such as through virtual meetings. In addition, awardees will share with CPM any in-progress and finalized tools, frameworks, etcetera that they develop through the grant, and CPM will give the awardee credit if the deliverables are used by CPM. The IRB must include provisions for sharing such in-progress research. For example, CPM may wish to share anonymized transcript excerpts in its professional learning events to support teacher learning.
  • Awardees will provide CPM copies of publications and presentations resulting from the project.
  • At the conclusion of funding, all awardees will provide CPM with a detailed report of the project’s outcomes. All awardees will submit a 10-minute video (approximately) explaining their research’s focus and its significance, findings, and implications for practice. Both will be posted on a CPM website.

Inspiring Connections
Course 1

Prelude

0.1.1 What do they have in common?
0.1.2 How can I effectively communicate with my team?
0.1.3 Is there another perspective?
0.1.4 How can I persevere through struggle?
0.1.5 How can I see this happening?
0.1.6 What patterns can I recognize?
0.1.7 What is the best strategy?
0.1.8 How does respect look?

Chapter 1

1.1 Proportions and Proportional Relationships
1.1.1 How can I determine the length?
1.1.2 How big is a million?
1.1.3 How can I predict the outcome?
1.1.4 What is your fair share?
1.1.5 How can I prove two ratios form a proportion?
1.1.6 What is the relationship between the numbers?
1.2 Integer Operations
1.2.1 How can I change temperatures?
1.2.2 How can I show my thinking?
1.2.3 How can adding zero help?
1.2.4 How can I multiply integers?
1.2.5 How can I divide integers?
1.2.6 How can I compose numbers?
1.2.7 What is My Number?
1.3 Proportions and Graphs
1.3.1 How can a graph tell a story?
1.3.2 How do graphs, scale, and proportions connect?

Chapter 2

2.1 Fraction and Decimal Conversions
2.1.1 How can I rewrite it?
2.1.2 How do I write it?
2.1.3 Which representations are equivalent?
2.2 Probability
2.2.1 Is it likely or unlikely?
2.2.2 How can I represent probability as a fraction, decimal, and percent?
2.2.3 How does probability work in real-world situations?
2.2.4 How can I predict the theoretical probability using experimental data?
2.3 Scale Drawings
2.3.1 How can I determine the distance?
2.3.2 How can I enlarge a shape?
2.3.3 Does that look right?
2.3.4 Is it a scaled copy?
2.3.5 What is the best scale?
2.4 Cross Sections
2.4.1 What do I see when I slice a three-dimensional object?
2.4.2 How are cross sections and volume related?

Chapter 3

3.1 Proportional Relationships
3.1.1 How does it grow?
3.1.2 How does the money grow?
3.1.3 Is this a proportional relationship?
3.1.4 How can I create a graph?
3.1.5 What do the points mean?
3.1.6 What connections can I make?
3.2 Data and Statistics: Using Samples to Make Predictions
3.2.1 What connections can I make?
3.2.2 Which sample is more accurate?
3.2.3 Does the sample represent the population?
3.2.4 How close is my sample?
3.2.5 How are the problems related?

Chapter 4

4.1 Multiple Representations of Proportional Relationships
4.1.1 How fast can I click?
4.1.2 How can I determine which grows faster?
4.1.3 How do I see the unit rate?
4.1.4 How can I write an equation?
4.1.5 What is the better deal?
4.1.6 What impact do I have?
4.1.7 How can I calculate values more efficiently?
4.1.8 How can I convert between different units of measurement?
4.1.9 How can I make the connections?
4.2 Circumference and Area of a Circle
4.2.1 How are they proportional?
4.2.2 How much space is inside?
4.2.3 What is the formula for the area of a circle?
4.2.4 How can the formula for the area of a circle help me?

Chapter 5

5.1 Probability
5.1.1 What are the chances?
5.1.2 How can I calculate the probability of more than one event?
5.1.3 What if there is more than one event?
5.1.4 What if there are more than two events?
5.1.5 How can I determine all of the outcomes?
5.1.6 What if it is more complicated?
5.2 Integer Operations Continued
5.2.1 How does each operation move points on a number line?
5.2.2 How can I show division?
5.2.3 How can I calculate it?
5.2.4 How can I check my guess?

Chapter 6

6.1 Data Distributions
6.1.1 Who is steadier?
6.1.2 How different are they?
6.1.3 How do they compare?
6.1.4 Who is more efficient?
6.1.5 How can I simulate a sample?
6.2 Numerical and Algebraic Expressions
6.2.1 How can I combine them?
6.2.2 How can I rewrite an expression?
6.2.3 How can I write an expression with negatives?
6.2.4 What does zero look like?
6.2.5 How does it move?
6.3 Equivalent Expressions
6.3.1 How can I group them?
6.3.2 Are they equivalent?
6.3.3 What are the connections?

Chapter 7

7.1 Operations With Rational Numbers
7.1.1 Will the amount increase or decrease?
7.1.2 Are differences and distance the same?
7.1.3 Can I add these?
7.2 Percent Change
7.2.1 Does this represent an increase or a decrease?
7.2.2 How does this change the total?
7.2.3 How is the money split?
7.2.4 Do I pay more?
7.3 Percents in the Real World
7.3.1 Is this good for business?
7.3.2 How much did it change?
7.3.3 Is this acceptable?
7.3.4 How are percents represented in expressions?
7.3.5 Which is easier, calculating with fractions or decimals?

Chapter 8

8.1 Multiplication and Division of Rational Numbers
8.1.1 Is the product positive or negative?
8.1.2 How are multiplication and division connected?
8.1.3 What is the relationship?
8.1.4 How can I divide?
8.1.5 How do I solve it?
8.2 Working With Expressions
8.2.1 Which is greater?
8.2.2 How can I record my work?
8.2.3 What happens when the comparison depends on x?

Chapter 9

9.1 Angle Relationships
9.1.1 How can I draw an angle?
9.1.2 How can I combine angles?
9.1.3 How can I calculate the measure of a missing angle?
9.2 Triangle Creation
9.2.1 How can I put angles and lengths together?
9.2.2 Will these lengths make a triangle?
9.2.3 How many triangles? 9.2.4 Can I construct it?
9.3 Volume and Surface Area
9.3.1 How much material do I need?
9.3.2 How do I calculate the surface area and volume?
9.3.3 How much will it hold?
9.3.4 What am I measuring?

Chapter 10

10.1: Explorations and Investigations
10.1.1 How can I make 0?
10.1.2 What number properties pair well?
10.1.3 How can you place algebraic expressions on the number line?
10.1.4 How can I solve it?
10.1.5 What can you say about the sums of consecutive numbers?
10.2: Restaurant Math
10.2.1 How can you draw it to scale?
10.2.2 How can you calculate the cost?
10.2.3 What do portions have to do with proportions?
10.2.4 What markdown undoes a markup?

Inspiring Connections
Course 2

Prelude

0.1.1

Who are my classmates?

0.1.2

How do I work collaboratively?

0.1.3

What questions can I ask?

0.1.4

How can I categorize my words?

0.1.5

How can I communicate my ideas?

0.1.6

How can the team build this together?

0.1.7

What do we need to work togethe

 

Chapter 1

1.1 Numbers and Data

1.1.1 How should data be placed on this line?

1.1.2 Where do these numbers belong on this line?

1.1.3 How can I use two lines to solve problems?

1.1.4 How can data be used to answer a question?

1.1.5 How are histograms helpful?

1.1.6 How else can data be displayed?

1.2 Shapes and Area,

1.2.1 How can I write equivalent expressions in area and perimeter?

1.2.2 What shapes make up the polygon?

1.2.3 How can I make it a rectangle?

1.3 Expressions

1.3.1 How can I describe it using symbols?

1.3.2 What are the parts of an expression?

1.3.3 How do I work with decimals?

1.3.4 How do I multiply multi-digit decimals?

1.3.5 How can I represent the arrangement?

Chapter 2

2.1 Ratio Language

2.1.1 How can I compare two quantities? 

2.1.2 How can I write ratios?

2.1.3 How can I see ratios in data representations?

2.2 Equivalent Ratios

2.2.1 How can I visualize ratios?

2.2.2 How can I see equivalent ratios in a table?

2.2.3 How can I see equivalent ratios in a double number line?

2.2.4 How can I see equivalent ratios in tape diagrams?

2.2.5  How can I use equivalent ratios?

2.2.6 What do these represent?

2.3 Measurement

2.3.1 What are the measurements?

2.3.2 What are the units?

2.3.3 How can I convert units

Chapter 3

3.1 Measures of Center 

3.1.1 How can I measure the center?

3.1.2 How else can I measure the center?

3.1.3 Which is the better measure of center?

3.1.4 What happens when I change the data?

3.2 Integers

3.2.1 What numbers do I see?

3.2.2 What number is this?

3.2.3 What does a number line say about a number?

3.2.4 How do I compare different types of numbers?

3.3 Absolute Value

3.3.1 How do I describe the location?

3.3.2 How far do I walk?

3.3.3 Which one is greater?

3.3.4 How do I communicate mathematically?

 

3.4 Coordinate Plane

3.4.1 How can you precisely indicate a location?

3.4.2 What is the correct order?

3.4.3bWhat symbol represents me?

Chapter 4

4.1 Fractions, Decimals, and Percents
4.1.1 How can I tell if the ratios are equal?
4.1.2 What does “percent” mean?
4.1.3 How can I convert a fraction?
4.1.4 How can I convert a percent?
4.1.5 How can I convert a decimal?

4.2 Percents 4.2.1 How can I show it?
4.2.2 What can I learn from the label?
4.2.3 Are the percents fair?
4.3 Unit Rates in Tables and Graphs 4.3.1 How can I compare rates?
4.3.2 Which rate is better?
4.3.3 Which deal is best?
4.3.4 What is the unit rate?
4.3.5 How can I use different data representations?

Chapter 5

5.1 Variation in Data
5.1.1 How do I ask a statistical question?
5.1.2 What does each representation say about the data?
5.1.3 What does the box in a box plot represent?
5.1.4 How else can I describe data?

5.2 Area
5.2.1 What is the height?
5.2.2 Can I reconfigure a parallelogram into a rectangle?
5.2.3 How do I calculate the area?
5.2.4 How many triangles do I need?
5.2.5 What is my perspective?
5.2.6 Is it fair to play by the rules?
5.2.7 What shapes do I see?

5.3 Fractions
5.3.1 How can I represent fraction multiplication?
5.3.2 How can I multiply fractions?
5.3.3 How can I multiply mixed numbers?

Chapter 6

6.1 Rules of Operations
6.1.1 What does it mean?
6.1.2 What do mathematicians call this?
6.1.3 How much should I ask for?
6.1.4 How can I write mathematical expressions?
6.1.5 How do mathematicians abbreviate?
6.1.6 In what order should I evaluate?

6.2 Multiples and Factors
6.2.1 When will they be the same?
6.2.2 What are multiples?
6.2.3 What do they have in common?
6.2.4 Who is your secret valentine?
6.2.5 How can I understand products?
6.2.6 How can I rewrite expressions?
6.2.7 Which method do I use?

Chapter 7

7.1 Whole Number and Decimal Division
7.1.1 How can I share equally?
7.1.2 Which strategy is the most efficient?
7.1.3 How can I write the number sentence?
7.1.4 How can I divide decimals?
7.1.5 How should the problem be arranged?

7.2 Fraction Division
7.2.1 What if the divisor is a fraction?
7.2.2 How many fit?
7.2.3 How can I visualize this?
7.2.4 What is common about this?
7.2.5 How can I use a Giant One?
7.2.6 Which method is most efficient?

Chapter 8

8.1. Algebra Tiles
8.1.1 What do these shapes represent?
8.1.2 What does a group of tiles represent?
8.1.3 What is an equivalent expression?
8.1.4 Which terms can be combined?
8.1.5 What do the numbers mean?
8.1.6 What can a variable represent?

8.2 Expressions
8.2.1 How can I count it?
8.2.2 What if the size of the pool is unknown?
8.2.3 How can I use an algebraic expression?

8.3 Equations and Inequalities
8.3.1 Which values make the equation true?
8.3.2 How can patterns be represented?
8.3.3 What is the equation?
8.3.4 How many could there be?

Chapter 9

9.1 Equations and Inequalities Continued
9.1.1 When is the statement true?
9.1.2 How do I undo that?
9.1.3 How can I visualize an equation?
9.1.4 How can I solve an equation?
9.1.5 How can I make the unknown known?
9.1.6 How can I include all the solutions?
9.1.7 Which method should I use?
9.2 Rate Problems
9.2.1 How much does rice cost?
9.2.2 How long will it take?
9.2.3 How can I compare them?
9.2.4 How long will the race take?
9.2.5 How can I represent the rate?

Chapter 10

10.1: Explorations and Investigations
10.1.1 How can I make 0?
10.1.2 What number properties pair well?
10.1.3 How can you place algebraic expressions on the number line?
10.1.4 How can I solve it?
10.1.5 What can you say about the sums of consecutive numbers?
10.2: Restaurant Math
10.2.1 How can you draw it to scale?
10.2.2 How can you calculate the cost?
10.2.3 What do portions have to do with proportions?
10.2.4 What markdown undoes a markup?

Chapter 11

11.1: Ratios and Proportions
11.1.1 How much food is there?
11.1.2 How much do we need?
11.1.3 How much is that?
11.1.4 How can I redesign the classroom?
11.2: The Number System
11.2.1 Can I determine all the right measurements?
11.2.2 How can I show my understanding?

Inspiring Connections
Course 3

Prelude

0.1.1 What can I learn from my classmates?
0.1.2 How can shapes move?
0.1.3 What does respect mean to me?
0.1.4 What story might this represent?
0.1.5 Do all cities value parks the same?
0.1.6 How can I contribute to my team?

Chapter 1

1.1 Data and Graphs
1.1.1 How can I represent data?
1.1.2 How can I use data to solve a problem?
1.1.3 Is the roller coaster safe?
1.1.4 Is there a relationship?
1.1.5 What is the relationship?

1.2 Introduction to Transformations
1.2.1 How can I move a figure on the coordinate plane?
1.2.2 How can I describe the steps precisely?
1.2.3 Is there another way?
1.3 Linear Relationships
1.3.1 How can I graph a proportional relationship?
1.3.2 How do they compare?
1.3.3 Can I graph myself?
1.3.4 How can I represent this with a graph?
1.3.5 How can I graph a linear relationship?

Chapter 2

2.1 Rigid Transformations
2.1.1 How can I describe it?
2.1.2 How does reflection affect coordinates?
2.1.3 What can I create?
2.2 Similarity
2.2.1 What if I multiply?
2.2.2 How do shapes change?
2.2.3 What can I say about dilated shapes?
2.2.4 Are they similar?
2.2.5 How can I move a shape on a coordinate plane?
2.3 Graphing Systems of Equations
2.3.1 Where do the lines cross?
2.3.2 Will different tile patterns ever have the same number of tiles?

Chapter 3

3.1 Trend Lines
3.1.1 Are these variables related?
3.1.2 Which line fits the data well?
3.1.3 How can this association be explained?
3.2 Solving Equations with Algebra Tiles
3.2.1 How can I represent an expression?
3.2.2 How can I rewrite an expression?
3.2.3 How can I compare two expressions?
3.2.4 How can I solve the equation?
3.3 Graphing Linear Equations
3.3.1 What is the rule?
3.3.2 How can I make a prediction?
3.3.3 What is a graph and how is it useful?
3.3.4 How should I graph?
3.3.5 What observations can I make about a graph?

Chapter 4

4.1 Exponents, Part 1
4.1.1 What is exponential growth?
4.1.2 How can you (re)write it?
4.1.3 How can notation help you make sense of exponential expressions?
4.1.4 Are there other exponent properties?
4.1.5 How can I prevent common exponential expression errors?
4.2 Solving Equations
4.2.1 How can I check my answer?
4.2.2 Is there always a solution?
4.2.3 How many solutions are there?
4.2.4 How can I solve complicated equations?
4.2.5 How can I write an equation to meet the criteria?
4.3 Exponents, Part 2
4.3.1 What if the exponent is not positive?
4.3.2 How do you know which exponent properties to use?

Chapter 5

5.1 Representations of a Line
5.1.1 What is the connection?
5.1.2 How can you show it?
5.1.3 How does it grow?
5.1.4 How is the growth represented?
5.1.5 How can I write the rule?
5.1.6 How can you make connections?
5.1.7 How can you use growth?
5.1.8 What are the connections?
5.2 Graphs & Equations of Systems
5.2.1 How can I change it to y = mx + b form?
5.2.2 How can I eliminate fractions and decimals in equations?
5.2.3 How do I change the line?
5.2.4 Is the intersection significant?
5.2.5 What is the equation?

Chapter 6

6.1 Solving Systems Algebraically
6.1.1 Where do the lines intersect?
6.1.2 When are they the same?
6.1.3 What if the equations are not in y = mx + b form?
6.1.4 How many solutions are there?
6.2 Slope & Rate of Change
6.2.1 What is the equation of the line?
6.2.2 How does y change with respect to x?
6.2.3 When is it the same?
6.2.4 What’s the point?
6.2.5 Can I connect rates to slopes?
6.3 Associations
6.3.1 What is the equation for a trend line?
6.3.2 How can I use an equation?
6.3.3 What if the data is not numerical?
6.3.4 Is there an association?

Chapter 7

7.1 Angles
7.1.1 How are the angles related?
7.1.2 Are there other congruent angles?
7.1.3 What about the angles in a triangle?
7.1.4 What if the angle is on the outside?
7.1.5 Can angles show similarity?
7.2 Right Triangle Theorem
7.2.1 Can I make a right triangle?
7.2.2 What is special about a right triangle?
7.2.3 How can I calculate the side length?
7.2.4 What kind of number is it?
7.2.5 How can I use the Right Triangle Theorem to Solve Problems?
7.2.6 How can I determine lengths in three dimensions?
7.2.7 How can I prove it?

Chapter 8

8.1Introduction to Functions

 

8.1.1

How can you (de)code the message?

 

8.1.2

How can a graph tell a story?

 

8.1.3

What can you predict?

 

8.1.4

Which prediction is best?

 

8.1.5

How does the output change based on the input?

 

8.1.6

How do you see the relationship?

8.2

 Characteristics of Functions

 

8.2.1

What is a function?

 

8.2.2

How can you describe the relationship?

 

8.2.3

How do I sketch it?

 

8.2.4

How many relationships are there?

8.3

Linear and Nonlinear Functions

 

8.3.1

Is it linear or nonlinear?

 

8.3.2

What clues do ordered pairs reveal about a relationship?

 

8.3.3

What other functions might you encounter?

Chapter 9

9.1Volume

 

9.1.1

Given the volume of a cube, how long is the side?

 

9.1.2

What if the base is not a polygon?

 

9.1.3

What if the layers are not the same?

 

9.1.4

What if it is oblique?

 

9.1.5

What if it is a three-dimensional circle?

9.2

Scientific Notation

 

9.2.1

How can I write very large or very small numbers?

 

9.2.2

How do I compare very large numbers?

 

9.2.3

How do I multiply and divide numbers written in scientific notation?

 

9.2.4

How do I add and subtract numbers written in scientific notation?

 

9.2.5

How do I compute it?

9.3

Applications of Volume

 

9.3.1

What does a volume function look like?

 

9.3.2

What is the biggest cone?

 

9.3.3

How do all the items fit together?

Chapter 10

10.1Explorations and Investigations

 

10.1.1

How close can I get?

 

10.1.2

Can you make them all?

 

10.1.3

How many triangles will there be?

 

10.1.4

What’s my angle?

 

10.1.5

Function-function, what’s your function?

 

10.1.6

Is it always true?

 

10.1.7

What’s right?

 

10.1.8

What’s your story?

You are now leaving cpmstg.wpengine.com.

Did you want to leave cpmstg.wpengine.com?

I want to leave cpmstg.wpengine.com.

No, I want to stay on cpmstg.wpengine.com

Algebra Tiles Blue Icon

Algebra Tiles Session

  • Used throughout CPM middle and high school courses
  • Concrete, geometric representation of algebraic concepts.
  • Two-hour virtual session,
  •  Learn how students build their conceptual understanding of simplifying algebraic expressions
  • Solving equations using these tools.  
  • Determining perimeter,
  • Combining like terms,
  • Comparing expressions,
  • Solving equations
  • Use an area model to multiply polynomials,
  • Factor quadratics and other polynomials, and
  • Complete the square.
  • Support the transition from a concrete (manipulative) representation to an abstract model of mathematics..

Foundations for Implementation

This professional learning is designed for teachers as they begin their implementation of CPM. This series contains multiple components and is grounded in multiple active experiences delivered over the first year. This learning experience will encourage teachers to adjust their instructional practices, expand their content knowledge, and challenge their beliefs about teaching and learning. Teachers and leaders will gain first-hand experience with CPM with emphasis on what they will be teaching. Throughout this series educators will experience the mathematics, consider instructional practices, and learn about the classroom environment necessary for a successful implementation of CPM curriculum resources.

Page 2 of the Professional Learning Progression (PDF) describes all of the components of this learning event and the additional support available. Teachers new to a course, but have previously attended Foundations for Implementation, can choose to engage in the course Content Modules in the Professional Learning Portal rather than attending the entire series of learning events again.

Edit Content

Building on Instructional Practice Series

The Building on Instructional Practice Series consists of three different events – Building on Discourse, Building on Assessment, Building on Equity – that are designed for teachers with a minimum of one year of experience teaching with CPM instructional materials and who have completed the Foundations for Implementation Series.

Building on Equity

In Building on Equity, participants will learn how to include equitable practices in their classroom and support traditionally underserved students in becoming leaders of their own learning. Essential questions include: How do I shift dependent learners into independent learners? How does my own math identity and cultural background impact my classroom? The focus of day one is equitable classroom culture. Participants will reflect on how their math identity and mindsets impact student learning. They will begin working on a plan for Chapter 1 that creates an equitable classroom culture. The focus of day two and three is implementing equitable tasks. Participants will develop their use of the 5 Practices for Orchestrating Meaningful Mathematical Discussions and curate strategies for supporting all students in becoming leaders of their own learning. Participants will use an equity lens to reflect on and revise their Chapter 1 lesson plans.

Building on Assessment

In Building on Assessment, participants will apply assessment research and develop methods to provide feedback to students and inform equitable assessment decisions. On day one, participants will align assessment practices with learning progressions and the principle of mastery over time as well as write assessment items. During day two, participants will develop rubrics, explore alternate types of assessment, and plan for implementation that supports student ownership. On the third day, participants will develop strategies to monitor progress and provide evidence of proficiency with identified mathematics content and practices. Participants will develop assessment action plans that will encourage continued collaboration within their learning community.

Building on Discourse

In Building on Discourse, participants will improve their ability to facilitate meaningful mathematical discourse. This learning experience will encourage participants to adjust their instructional practices in the areas of sharing math authority, developing independent learners, and the creation of equitable classroom environments. Participants will plan for student learning by using teaching practices such as posing purposeful questioning, supporting productive struggle, and facilitating meaningful mathematical discourse. In doing so, participants learn to support students collaboratively engaged with rich tasks with all elements of the Effective Mathematics Teaching Practices incorporated through intentional and reflective planning.