CPM Educational Program provides both
*These pillars are reflected in current NCTM standards and research in mathematics education; what we know about their benefits for mathematics learning continues to deepen and expand but not shift.
Read the 2023 CPM Research Base Report (PDF)
Read the 2013 CPM Research Base Report (PDF)
Read the Original CPM Research Base Report (PDF)
CPM Educational Program, a California non-profit corporation, has provided problem-based instructional materials and professional development for teachers since its inception in 1989. CPM teaching strategies focus on how students best learn and retain mathematics. The research-based principles that guide the course are the following:
“It (CPM) really engages them and challenges them in a positive manner. One of the advantages is that topics spiral — we hit on the same topics over and over throughout the whole year, so it’s not like in years past where you cover a topic and after that chapter you’d be done. (A topic) comes back around over and over, and helps their retention level.”
“When I taught with a traditional book, my students would not even try a problem unless I showed them how to do a problem just like the one they were going to get for homework. Now, with CPM I can give any problem to students and they will always try to work through it, whether it is a problem that they have seen before or a completely new concept. It can be a team problem or individual problem and they will always try to solve it. They usually have a great idea about how to start or even solve the whole problem. The students continually open my eyes to the number of techniques they use to solve problem.”
I like that the homework is both "review and preview" because I know I will be able to do it on my own at home. I also know that my teammates in class can work together to understand something new that we are learning.
I like the math notes boxes so I can see examples. I also like the closure activities where I can check my own work and find examples if I don't understand something.
My favorite thing about this math class is doing the activities because I am more of a hands on learner and I learn more when I do activities that involve me working with stuff and my grades have improved ever since we have done this course.
I like this class because it helps with me with my basic facts and we do things in our math class that are the same in our intervention. It is good for getting better at math and improving our skills and test skills.
This class helps with my regular math class, and I went up on my school’s benchmarks, and I feel more confident in my math class.
This class really helps me on my school benchmarks and other test scores. My scores went up because of this class and how small the group is and how we can learn more efficient.
I really like the way that this works because all the lessons make me do stuff I didn’t know before and then we do it a lot more often. Basically I learn it ahead of time before what we do in math class. Also it helps keep my math grade up because I learn new things.
I really like the way that this works because all the lessons make me do stuff I didn’t know before and then we do it a lot more often. Basically I learn it ahead of time before what we do in math class. Also it helps keep my math grade up because I learn new things.
Read the Press Release.
CPM Educational Program’s Calculus, reviewed by Learning List, is included on the College Board’s Advanced Placement (AP) Example Textbooks List for Calculus AB and BC courses.
Learning List provides independent reviews of K-12 instructional materials and online courses. For more details, view the New Review: CPM Educational Program's Calculus.
Read the complete EdReports Publisher Commentary for Core Connections, Courses 1-3 (PDF) and CPM’s response.
We invite you to read highlights from Ed Reports.org review of CPM Middle School Core Connections, Courses 1-3 (PDF).
We invite you to read the complete CPM Integrated Series EdReports review.
0.1.1
Who are my classmates?
0.1.2
How do I work collaboratively?
0.1.3
What questions can I ask?
0.1.4
How can I categorize my words?
0.1.5
How can I communicate my ideas?
0.1.6
How can the team build this together?
0.1.7
What do we need to work togethe
1.1 Numbers and Data
1.1.1 How should data be placed on this line?
1.1.2 Where do these numbers belong on this line?
1.1.3 How can I use two lines to solve problems?
1.1.4 How can data be used to answer a question?
1.1.5 How are histograms helpful?
1.1.6 How else can data be displayed?
1.2 Shapes and Area,
1.2.1 How can I write equivalent expressions in area and perimeter?
1.2.2 What shapes make up the polygon?
1.2.3 How can I make it a rectangle?
1.3 Expressions
1.3.1 How can I describe it using symbols?
1.3.2 What are the parts of an expression?
1.3.3 How do I work with decimals?
1.3.4 How do I multiply multi-digit decimals?
1.3.5 How can I represent the arrangement?
2.1 Ratio Language
2.1.1 How can I compare two quantities?
2.1.2 How can I write ratios?
2.1.3 How can I see ratios in data representations?
2.2 Equivalent Ratios
2.2.1 How can I visualize ratios?
2.2.2 How can I see equivalent ratios in a table?
2.2.3 How can I see equivalent ratios in a double number line?
2.2.4 How can I see equivalent ratios in tape diagrams?
2.2.5 How can I use equivalent ratios?
2.2.6 What do these represent?
2.3 Measurement
2.3.1 What are the measurements?
2.3.2 What are the units?
2.3.3 How can I convert units
3.1 Measures of Center
3.1.1 How can I measure the center?
3.1.2 How else can I measure the center?
3.1.3 Which is the better measure of center?
3.1.4 What happens when I change the data?
3.2 Integers
3.2.1 What numbers do I see?
3.2.2 What number is this?
3.2.3 What does a number line say about a number?
3.2.4 How do I compare different types of numbers?
3.3 Absolute Value
3.3.1 How do I describe the location?
3.3.2 How far do I walk?
3.3.3 Which one is greater?
3.3.4 How do I communicate mathematically?
3.4 Coordinate Plane
3.4.1 How can you precisely indicate a location?
3.4.2 What is the correct order?
3.4.3bWhat symbol represents me?
4.1 Fractions, Decimals, and Percents
4.1.1 How can I tell if the ratios are equal?
4.1.2 What does “percent” mean?
4.1.3 How can I convert a fraction?
4.1.4 How can I convert a percent?
4.1.5 How can I convert a decimal?
5.1 Variation in Data
5.1.1 How do I ask a statistical question?
5.1.2 What does each representation say about the data?
5.1.3 What does the box in a box plot represent?
5.1.4 How else can I describe data?
5.2 Area
5.2.1 What is the height?
5.2.2 Can I reconfigure a parallelogram into a rectangle?
5.2.3 How do I calculate the area?
5.2.4 How many triangles do I need?
5.2.5 What is my perspective?
5.2.6 Is it fair to play by the rules?
5.2.7 What shapes do I see?
5.3 Fractions
5.3.1 How can I represent fraction multiplication?
5.3.2 How can I multiply fractions?
5.3.3 How can I multiply mixed numbers?
6.1 Rules of Operations
6.1.1 What does it mean?
6.1.2 What do mathematicians call this?
6.1.3 How much should I ask for?
6.1.4 How can I write mathematical expressions?
6.1.5 How do mathematicians abbreviate?
6.1.6 In what order should I evaluate?
6.2 Multiples and Factors
6.2.1 When will they be the same?
6.2.2 What are multiples?
6.2.3 What do they have in common?
6.2.4 Who is your secret valentine?
6.2.5 How can I understand products?
6.2.6 How can I rewrite expressions?
6.2.7 Which method do I use?
7.1 Whole Number and Decimal Division
7.1.1 How can I share equally?
7.1.2 Which strategy is the most efficient?
7.1.3 How can I write the number sentence?
7.1.4 How can I divide decimals?
7.1.5 How should the problem be arranged?
7.2 Fraction Division
7.2.1 What if the divisor is a fraction?
7.2.2 How many fit?
7.2.3 How can I visualize this?
7.2.4 What is common about this?
7.2.5 How can I use a Giant One?
7.2.6 Which method is most efficient?
8.1. Algebra Tiles
8.1.1 What do these shapes represent?
8.1.2 What does a group of tiles represent?
8.1.3 What is an equivalent expression?
8.1.4 Which terms can be combined?
8.1.5 What do the numbers mean?
8.1.6 What can a variable represent?
8.2 Expressions
8.2.1 How can I count it?
8.2.2 What if the size of the pool is unknown?
8.2.3 How can I use an algebraic expression?
8.3 Equations and Inequalities
8.3.1 Which values make the equation true?
8.3.2 How can patterns be represented?
8.3.3 What is the equation?
8.3.4 How many could there be?
1.1 Data and Graphs
1.1.1 How can I represent data?
1.1.2 How can I use data to solve a problem?
1.1.3 Is the roller coaster safe?
1.1.4 Is there a relationship?
1.1.5 What is the relationship?
8.1 | Introduction to Functions | |
| 8.1.1 | How can you (de)code the message? |
| 8.1.2 | How can a graph tell a story? |
| 8.1.3 | What can you predict? |
| 8.1.4 | Which prediction is best? |
| 8.1.5 | How does the output change based on the input? |
| 8.1.6 | How do you see the relationship? |
8.2 | Characteristics of Functions | |
| 8.2.1 | What is a function? |
| 8.2.2 | How can you describe the relationship? |
| 8.2.3 | How do I sketch it? |
| 8.2.4 | How many relationships are there? |
8.3 | Linear and Nonlinear Functions | |
| 8.3.1 | Is it linear or nonlinear? |
| 8.3.2 | What clues do ordered pairs reveal about a relationship? |
| 8.3.3 | What other functions might you encounter? |
9.1 | Volume | |
| 9.1.1 | Given the volume of a cube, how long is the side? |
| 9.1.2 | What if the base is not a polygon? |
| 9.1.3 | What if the layers are not the same? |
| 9.1.4 | What if it is oblique? |
| 9.1.5 | What if it is a three-dimensional circle? |
9.2 | Scientific Notation | |
| 9.2.1 | How can I write very large or very small numbers? |
| 9.2.2 | How do I compare very large numbers? |
| 9.2.3 | How do I multiply and divide numbers written in scientific notation? |
| 9.2.4 | How do I add and subtract numbers written in scientific notation? |
| 9.2.5 | How do I compute it? |
9.3 | Applications of Volume | |
| 9.3.1 | What does a volume function look like? |
| 9.3.2 | What is the biggest cone? |
| 9.3.3 | How do all the items fit together? |
10.1 | Explorations and Investigations | |
| 10.1.1 | How close can I get? |
| 10.1.2 | Can you make them all? |
| 10.1.3 | How many triangles will there be? |
| 10.1.4 | What’s my angle? |
| 10.1.5 | Function-function, what’s your function? |
| 10.1.6 | Is it always true? |
| 10.1.7 | What’s right? |
| 10.1.8 | What’s your story? |
This professional learning is designed for teachers as they begin their implementation of CPM. This series contains multiple components and is grounded in multiple active experiences delivered over the first year. This learning experience will encourage teachers to adjust their instructional practices, expand their content knowledge, and challenge their beliefs about teaching and learning. Teachers and leaders will gain first-hand experience with CPM with emphasis on what they will be teaching. Throughout this series educators will experience the mathematics, consider instructional practices, and learn about the classroom environment necessary for a successful implementation of CPM curriculum resources.
Page 2 of the Professional Learning Progression (PDF) describes all of the components of this learning event and the additional support available. Teachers new to a course, but have previously attended Foundations for Implementation, can choose to engage in the course Content Modules in the Professional Learning Portal rather than attending the entire series of learning events again.
The Building on Instructional Practice Series consists of three different events – Building on Discourse, Building on Assessment, Building on Equity – that are designed for teachers with a minimum of one year of experience teaching with CPM instructional materials and who have completed the Foundations for Implementation Series.
In Building on Equity, participants will learn how to include equitable practices in their classroom and support traditionally underserved students in becoming leaders of their own learning. Essential questions include: How do I shift dependent learners into independent learners? How does my own math identity and cultural background impact my classroom? The focus of day one is equitable classroom culture. Participants will reflect on how their math identity and mindsets impact student learning. They will begin working on a plan for Chapter 1 that creates an equitable classroom culture. The focus of day two and three is implementing equitable tasks. Participants will develop their use of the 5 Practices for Orchestrating Meaningful Mathematical Discussions and curate strategies for supporting all students in becoming leaders of their own learning. Participants will use an equity lens to reflect on and revise their Chapter 1 lesson plans.
In Building on Assessment, participants will apply assessment research and develop methods to provide feedback to students and inform equitable assessment decisions. On day one, participants will align assessment practices with learning progressions and the principle of mastery over time as well as write assessment items. During day two, participants will develop rubrics, explore alternate types of assessment, and plan for implementation that supports student ownership. On the third day, participants will develop strategies to monitor progress and provide evidence of proficiency with identified mathematics content and practices. Participants will develop assessment action plans that will encourage continued collaboration within their learning community.
In Building on Discourse, participants will improve their ability to facilitate meaningful mathematical discourse. This learning experience will encourage participants to adjust their instructional practices in the areas of sharing math authority, developing independent learners, and the creation of equitable classroom environments. Participants will plan for student learning by using teaching practices such as posing purposeful questioning, supporting productive struggle, and facilitating meaningful mathematical discourse. In doing so, participants learn to support students collaboratively engaged with rich tasks with all elements of the Effective Mathematics Teaching Practices incorporated through intentional and reflective planning.