High School Math Curriculum

Student-Centered Math Curriculum Solution

These high quality high school courses will prepare students with the mathematical problem solving skills needed in college and for engaging with the world’s problems!

Includes core high school courses

PLUS 4th year courses (With content required for AP®)

  • Precalculus, Calculus, Statistics, Java

CPM's High School Programs lnclude

Math Curriculum Solution Centering on
Student Engagement

Pillars
The pillars of CPM course design—problem-based lessons with embedded mathematical practices for active student engagement, collaborative student work, and mixed, spaced practice—are informed by methodological research for teaching mathematics that leads to conceptual understanding.
Discover more
Research
Research has shown that when students talk about the mathematics, they gain a deeper understanding and remember it longer. In every lesson, CPM embeds work in study teams to encourage students to explain, justify, and critique their reasoning.
Review Research
Teamwork
When “teamwork is baked-into CPM tasks” and lessons provide “low floors and high ceilings,” students can work together to get started and persevere in complex problem-solving.
Empower your students

Algebra, Geometry & Algebra 2

High School Math Series
Correlations

Precalculus, Calculus, Statistics & Java

More About 4th-Year High School Courses

Precalculus Third Edition
and Supplement

  • Offered with additional AP® Supplements
  • Meets standards for 4th year high school math course
  • Well balanced among procedural fluency, deep conceptual understanding, strategic competence, and adaptive reasoning
  • Design similar to CPM Core Connections courses.
  • Introduction to calculus with functions, graphs, limits, area under a curve, and rates of change.
  • Labs and hands-on activities introduce and connect concepts, with an emphasis on modeling.
 

Calculus
Third Edition

  • Content required for an AP® Calculus course
  • Develops the big ideas of limits, derivatives, integrals and the Fundamental Theorem of Calculus, and series. Labs and hands-on activities introduce concepts.
  • Explores derivatives and integrals simultaneously, presented geometrically and in context.
 

Statistics

  • Content required for an AP® Statistics course
  • Active learning based, comprehensive, technologically enhanced.
  • Students can learn by solving engaging problems together in an active, technology-enhanced, classroom environment.
 

Computer Science Java

  • Covers AP® Computer Science A topics Concepts are introduced with much more student conjecture rather than traditional lectures.
  • Encourages collaboration
  • Focuses on moving students of all programming abilities to a higher level
  • Collaboration between students is a key component
 

*Advanced Placement® or AP® is a trademark registered by the College Board, which is not affiliated with, and does not endorse, this website.

 

Table of Contents

  • Precalculus Third Edition

  • Precalculus Third Edition Supplement

  • Calculus Third Editions

  • Statistics

  • Java

4th-year High School Math
Course Correlation

Core Connections
Algebra

Chapter 1: Functions

Section 1.1

1.1.1 Solving Puzzles in Teams

1.1.2
Investigating the Growth of Patterns

1.1.3 Investigating the Graphs of Quadratic Functions

Section 1.2

1.2.1 Describing a
Graph

1.2.2 Cube Root and Absolute Value Functions

1.2.3 Function Machines

1.2.4 Functions

1.2.5 Domain and Range

Chapter Closure

Chapter 2: Linear Relationships

Section 2.1

2.1.1 Seeing Growth in Linear Representations

2.1.2 Slope

2.1.3 Comparing Δy and Δx

2.1.4 y = mx + b and More on Slope

Section 2.2

2.2.1 Slope as Motion

2.2.2 Rate of Change

2.2.3 Equations of Lines in Situations

Section 2.3

2.3.1 Finding an Equation Given a Slope and a Point

2.3.2 Finding the Equation of a Line Through Two Points


Extension Activity Finding y = mx + b from Graphs and Tables

Chapter Closure

Chapter 3: Simplifying and Solving

Section 3.1

3.1.1 Simplifying Exponential Expressions

3.1.2 Zero and Negative Exponents

Section 3.2

3.2.1 EquationsAlgebra Tiles

3.2.2 Exploring an Area Model

3.2.3 Multiplying Binomials and the Distributive Property

3.2.4 Using Generic Rectangles to Multiply

Section 3.3

3.3.1 Solving Equations With Multiplication and Absolute Value

3.3.2 Working With Multi-Variable Equations

3.3.3 Summary of Solving Equations

Chapter Closure

Chapter 4: Systems of Equations

Section 4.1

4.1.1 Solving Word Problems by Writing Equations

4.1.2 One Equation or Two?

Section 4.2

4.2.1 Solving Systems of Equations Using Substitution

4.2.2 Making Connections: Systems, Solutions, and Graphs

4.2.3 Solving Systems Using Elimination

4.2.4 More Elimination

4.2.5 Choosing a Strategy for Solving Systems

Section 4.3

4.3.1 Pulling it all Together

Chapter Closure

Chapter 5: Sequences

Section 6.1

6.1.1 Line of Best Fit

6.1.2 Residuals

6.1.3 Upper and Lower Bounds

6.1.4 Least Squares Regression Line

Section 6.2

6.2.1 Residual Plots

6.2.2 Correlation

6.2.3 Association is N
ot Causation

6.2.4 Interpreting Correlation in Context

6.2.5 Curved Best – Fit
Models

Chapter Closure

Chapter 6: Modeling Two-Variable Data

Opening6.OPChapter Opening
Section 6.16.1.1Dividing
6.1.2Fractions as Division Problems
6.1.3Problem Solving with Division
6.1.4Solving Problems Involving Fraction Division
Section 6.26.2.1Order of Operations
6.2.2Area of a Rectangular Shape
6.2.3Naming Perimeters of Algebra Tiles
6.2.4Combining Like Terms
6.2.5Evaluating Algebraic Expressions
Closure6.CLChapter Closure

Chapter 7: Exponential Functions

Section 7.1

7.1.1 Investigating y= bx^3

7.1.2 Multiple Representations of Exponential Functions

7.1.3 More Applications of Exponential Growth

7.1.4 Exponential Decay

7.1.5 Graph→Equation

7.1.6 Completing the Multiple Representations Web

Section 7.2

7.2.1 Curve Fitting and Fractional Exponents

7.2.2 More Curve Fitting

7.2.3 Solving a System of Exponential Functions Graphically

Chapter Closure

Chapter 8: Quadratic Functions

Section 8.1

8.1.1 Introduction to Factoring Quadratics

8.1.2 Factoring with Generic Rectangles

8.1.3 Factoring with Special Cases

8.1.4 Factoring Completely

8.1.5 Factoring Shortcuts

Section 8.2

8.2.1 Multiple Representations for Quadratic Functions

8.2.2 Zero Product Property

8.2.3 More Ways To Find the x-Intercepts

8.2.4 Completing the Quadratic Web

8.2.5 Completing the Square

Chapter Closure

Chapter 9: Solving Quadratics and Inequalities

Section 9.1

9.1.1 Solving Quadratic Equations

9.1.2 Introduction to the Quadratic Formula

9.1.3 More Solving Quadratic Equations

9.1.4 Choosing a Strategy

Section 9.2

9.2.1 Solving Linear, One-Variable Inequalities

9.2.2 More Solving Inequalities

Section 9.3

9.3.1 Graphing Two-Variable Inequalities

9.3.2 Graphing Linear and Non-Linear Inequalities

Section 9.4

9.4.1 Systems of Inequalities

9.4.2 More Systems of Inequalities

9.4.3 Applying Inequalities to Solve Problems

Chapter Closure

Chapter 10: Solving Complex Equations

Section 10.1

10.1.1 Association in Two-Way Tables

Section 10.2

10.2.1 Solving by Rewriting

10.2.2 Fraction Busters

10.2.3 Multiple Methods for Solving Equations

10.2.4 Determining the Number of Solutions

10.2.5 Deriving the Quadratic Formula and the Number System

10.2.6 More Solving and an Application

Section 10.3

10.3.1 Intersection of Two Functions

10.3.2 Number of Parabola Intersections

10.3.3 Solving Quadratic and Absolute Value Inequalities

Chapter Closure

Chapter 11: Functions and Data

Section 11.1

11.1.1 Transforming Functions

11.1.2 Inverse Functions

Section 11.2

11.2.1 Investigating Data Representations

11.2.2 Comparing Data’

11.2.3 Standard Deviation

Section 11.3

11.3.1 Using a Best-Fit Line to Make a Prediction

11.3.2 Relation Treasure Hunt

11.3.3 Investigating a Complex Function

11.3.4 Using Algebra to Find a Maximum

11.3.5 Exponential Functions and Linear Inequalities

Chapter Closure

Appendix: Representing Expressions

Section A.1

A.1.1 Exploring Variables and Combining Like Terms

A.1.2 Simplifying Expressions by Combining Like Terms

A.1.3 Writing Algebraic Expressions

A.1.4 Using Zero to Simplify Algebraic Expressions

A.1.5 Using Algebra Tiles to Simplify Algebraic Expressions

A.1.6 Using Algebra Tiles to Compare Expressions

A.1.7 Simplifying and Recording Work

A.1.8 Using Algebra Tiles to Solve for x

A.1.9 More Solving Equations

Chapter Closure

Core Connections Geometry

Chapter 1: Shapes and Transformations

Section 1.1

1.1.1 Creating Quilt Using Symmetry

1.1.2 Making Predictions and Investigating Results

1.1.3 Perimeters and Areas of Enlarging Tile Patterns

1.1.4 Logical Arguments

1.1.5 Building a Kaleidoscope

Section 1.2

1.2.1 Spatial Visualization and Reflection

1.2.2 Rigid Transformations: Rotation and Translations

1.2.3 Slope of Parallel and Perpendicular Lines

1.2.4 Defining Transformations

1.2.5 Using Transformations to Create Shapes

1.2.6 Symmetry

Section 1.3

1.3.1 Attributes and Characteristics of Shapes

1.3.2 More Characteristics of Shapes

Chapter Closure

Chapter 2:Angles and Measurement

Section 2.1

2.1.1 Complementary, Supplementary, and Vertical Angles

2.1.2 Angles Formed by Transversals

2.1.3 More Angles Formed by Transversals

2.1.4 Angles in a Triangle

2.1.5 Applying Angle Relationships

Section 2.2

2.2.1 Units of Measure

2.2.2 Areas of Triangles and Composite Shapes

2.2.3 Areas of Parallelograms and Trapezoids

2.2.4 Heights and Areas

Section 2.3

2.3.1 Triangle Inequality

2.3.2 The Pythagorean Theorem

Chapter Closure

Chapter 3: Justification and Similarity

Section 3.1

3.1.1 Dilations

3.1.2 Similarity

3.1.3 Using Ratios of Similarity

3.1.4 Applications and Notation

Section 3.2

3.2.1 Conditions for Triangle Similarity

3.2.2 Creating a Flowchart

3.2.3 Triangle Similarity and Congruence

 3.2.4 More Conditions for TriangleSimilarity

3.2.5 Determining Similarity

3.2.6 Applying Similarity

Chapter Closure

Chapter 4: Trigonometry and Probability

Section 4.1

4.1.1 Constant Ratios in Right Triangles

4.1.2 Connecting Slope Ratios to Specific Angles

4.1.3 Expanding the Trig Table

4.1.4 The Tangent Ratio

4.1.5 Applying the Tangent Ratio

Section 4.2

4.2.1 Using an Area Model

4.2.2 Using a Tree Diagram

4.2.3 Probability Models

4.2.4 Unions, Intersections, and Complements

4.2.5 Expected Value

Chapter Closure

Chapter 5: Completing the Triangle Toolkit

Section 5.1

5.1.1 Sine and Cosine Ratios

5.1.2 Selecting a Trig Tool

5.1.3 Inverse Trigonometry

5.1.4 Applications

Section 5.2

5.2.1 Special Right Triangles

5.2.2 Pythagorean Triples

Section 5.3

5.3.1 Finding Missing Parts of Triangles

5.3.2 Law of Sines

5.3.3 Law of Cosines

5.3.4 Ambiguous Triangles(Optional)

5.3.5 Choosing a Tool

Chapter Closure

Chapter 6: Congruent Triangles

Section 6.1

6.1.1 Congruent Triangles3

6.1.2 Conditions for Triangle Congruence

6.1.3 Congruence of Triangles Through Rigid Transformations3526.1.4Flowcharts for Congruence

6.1.5 Converses

Section 6.2

6.2.1 Angles on a Pool Table

6.2.2 Investigating a Triangle

6.2.3 Creating a Mathematical Model

6.2.4 Analyzing a Game’

6.2.5 Using Transformations and Symmetry to Design Snowflakes

Chapter Closure

Chapter 7: Proof and Quadrilaterals

Section 7.1

7.1.1 Properties of a Circle

7.1.2 Building a Tetrahedron

7.1.3 Shortest Distance Problems

7.1.4 Using Symmetry to Study Polygons

Section 7.2

7.2.1 Special Quadrilaterals and Proof

7.2.2 Properties of Rhombi

7.2.3 More Proofswith Congruent Triangles

7.2.4 MoreProperties of Quadrilaterals

7.2.5 Two-Column Proofs

7.2.6 Explore-Conjecture-Prove

Section 7.3

7.3.1 Studying Quadrilaterals on a Coordinate Grid

7.3.2 Coordinate Geometry and Midpoints

7.3.3 Identifying Quadrilaterals on a Coordinate Grid

Chapter Closure

Chapter 8: Polygons and Circles

Section 8.1

8.1.1 Pinwheels and Polygons

8.1.2 Interior Angles of Polygons

8.1.3 Angles of Regular Polygons

8.1.4 Regular Polygon Angle Connections

8.1.5 Finding Areas of Regular Polygons

Section 8.2

8.2.1 Area Ratios of Similar Figures

8.2.2 Ratios of Similarity

Section 8.3

8.3.1 A Special Ratio

8.3.2 Area and Circumference of a Circle

8.3.3 Circles in Context

Chapter Closure

Chapter 9: Solids and Constructions

Section 9.1

9.1.1 Three-Dimensional Solids

9.1.2 Volumesand Surface Areas of Prisms

9.1.3 Prisms and Cylinders

9.1.4 Volumes of Similar Solids

9.1.5 Ratios of Similarity

Section 9.2

9.2.1 Introduction to Constructions

9.2.2 Constructing Bisectors

9.2.3 More Explorations with Constructions

9.2.4 Other Constructions

Chapter Closure

Chapter 10: Circles and Conditional Probability

Section 10.1

10.1.1 Introduction to Chords

10.1.2 Angles and Arcs

10.1.3 Chords and Angles

10.1.4 Tangents and Secants

10.1.5 Problem Solving with Circles

Section 10.2

10.2.1 Conditional Probability and Independence

10.2.2 Two-Way Tables

10.2.3 Applications of Probability

Section 10.3

10.3.1 The Fundamental Principle of Counting

10.3.2 Permutations

10.3.3 Combinations

10.3.4 Categorizing Counting Problems

10.3.5 Some Challenging Probability Problems

Chapter Closure

Chapter 11: Solids and Circles

Section 11.1

11.1.1 Platonic Solids

11.1.2 Pyramids

11.1.3 Volume of a Pyramid

11.1.4 Surface Area and Volume of a Cone

11.1.5 Surface Area and Volume of a Sphere

Section 11.2

11.2.1 Coordinates on a Sphere

11.2.2 Tangents and Arcs

11.2.3 Secant and Tangent Relationships

Chapter Closure

Chapter 12: Conics and Closure

Section 12.1

12.1.1 The Equation of a Circle

12.1.2 Completing the Square for Equations of Circles

12.1.3 Introduction to Conic Sections

12.1.4 Graphing a ParabolaUsing the Focus and Directrix

Section 12.2

12.2.1 Using Coordinate Geometry and Constructions to Explore Shapes

12.2.2 Euler’s Formula for Polyhedra

12.2.3 The Golden Ratio

12.2.4 Using Geometry to find Probabilities

Chapter Closure

Core Connections
Algebra 2

Chapter 1: Investigations and Functions

Section 1.1

1.1.1 Solving Puzzles in Teams

1.1.2 Using a Graphing Calculator to Explore a Function

1.1.3 Domain and Range

1.1.4 Points of Intersection in Multiple Representations

Section 1.2

1.2.1 Modeling a Geometric Relationship

1.2.2 Function Investigation

1.2.3 The Family of Linear Functions

1.2.4 Function Investigation Challenge

Chapter Closure

Chapter 2: Transformations of Parent Graphs

Section 2.1

2.1.1 Modeling Non-Linear Data

2.1.2 Parabola Investigation

2.1.3 Graphing a Parabola Without a Table

2.1.4 Rewriting in Graphing Form

2.1.5 Mathematical Modeling with Parabolas

Section 2.2

2.2.1 Transforming Other Parent Graphs

2.2.2 Describing (h,k) for Each Family of Functions

2.2.3 Transformations of Functions

2.2.4 Transforming Non-Functions

2.2.5 Transforming Piecewise-Defined Functions

Chapter Closur

Chapter 3: Equivalent Forms

Section 3.1

3.1.1 Equivalent Expressions

3.1.2 Rewriting Expressions and Determining Equivalence

3.1.3 Solving by Rewriting

Section 3.2

3.2.1 Investigating Rational Functions

3.2.2 Simplifying Rational Expressions

3.2.3 Multiplying and Dividing Rational Expressions

3.2.4 Adding and Subtracting Rational Expressions

3.2.5 Creating New Functions

Chapter Closure

Chapter 4: Solving and Intersections

Section 4.1

4.1.1 Strategies for Solving Equations

4.1.2 Solving Equations and Systems Graphically

4.1.3 Finding Multiple Solutions to Systems of Equations

4.1.4 Using Systems of Equations to Solve Problems

Section 4.2

4.2.1 Solving Inequalities with One or Two Variables

4.2.2 Using Systems to Solve a Problem

4.2.3 Application of Systems of Linear Inequalities

4.2.4 Using Graphs to Find Solutions

Chapter Closure

Chapter 5: Inverses and Logarithms

Section 5.1

5.1.1 “Undo” Equations

5.1.2 Using a Graph to Find an Inverse

5.1.3 Finding Inverses and Justifying Algebraically

Section 5.2

5.2.1 Finding the Inverse of an Exponential Function

5.2.2 Defining the Inverse of an Exponential Function

5.2.3 Investigating the Family of Logarithmic Functions

5.2.4 Transformations of Logarithmic Functions

5.2.5 Investigating Compositions of Functions

Chapter Closure

Chapter 6: 3-D Graphing and Logarithms

Section 6.1

6.1.1 Creating a Three-Dimensional Model

6.1.2 Graphing Equations in Three Dimensions

6.1.3 Systems of Three-Variable Equations2666.1.4Solving Systems of Three Equations with Three Unknowns

6.1.5 Using Systems of Three Equations for Curve Fitting

Section 6.2

6.2.1 Using Logarithms to Solve Exponential Equations

6.2.2 Investigating the Properties of Logarithms

6.2.3 Writing Equations of Exponential Functions

6.2.4 An Application of Logarithms

Chapter Closure

Chapter 7: Trigonometric Functions

Section 7.1

7.1.1 Introduction to Cyclic Models

7.1.2 Graphing the Sine Function

7.1.3 Unit Circle ↔Graph

7.1.4 Graphing and Interpreting the Cosine Function

7.1.5 Defining a Radian

7.1.6 Building a Unit Circle

7.1.7 The Tangent Function

Section 7.2 7.2.1 Transformations of y= sin x

7.2.2 One More Parameter for a Cyclic Function

7.2.3 Period of a Cyclic Function

7.2.4 Graph ↔Equation

Chapter Closure

Chapter 8: Polynomials

Section 8.1

8.1.1 Sketching Graphs of Polynomial Functions

8.1.2 More Graphs of Polynomials

8.1.3 Stretch Factorsfor Polynomial Functions

Section 8.2

8.2.1 Introducing Imaginary Numbers

8.2.2 Complex Roots

8.2.3 More Complex Numbers and Equations

Section 8.3

8.3.1 Polynomial Division

8.3.2 Factors and Integral Roots

8.3.3 An Application of Polynomials

Chapter Closure

Chapter 9: Randomization and Normal Distributions

Section 9.1

9.1.1 Survey Design4

9.1.2 Samples and the Role of Randomness

9.1.3 Bias in Convenience Samples

Section 9.2

9.2.1 Testing Causeand Effect with Experiments

9.2.2 Conclusions From Studies

Section 9.3

9.3.1 Relative Frequency Histograms

9.3.2 The Normal Probability Density Function

9.3.3 Percentiles

Chapter Closure

Chapter 10: Series

Section 10.1

10.1.1 Introduction to Arithmetic Series

10.1.2 More Arithmetic Series

10.1.3 General Arithmetic Series

10.1.4 Summation Notation and Combinations of Series

Section 10.2

10.2.1 Geometric Series

10.2.2 Infinite Series

Section 10.3 

10.3.1 Pascal’s Triangle and the Binomial Theorem

10.3.2 TheNumber e

Chapter Closure

Chapter 11: Simulating Sampling Variability

Section 11.1

11.1.1 Simulations of Probability

11.1.2 More Simulations of Probability

11.1.3 Simulating Sampling Variability

Section 11.2

11.2.1 Statistical Test Using Sampling Variability

11.2.2 Variability in Experimental Results

11.2.3 Quality Control

11.2.4 Statistical Process Control

Section11.3

11.3.1 Analyzing Decisions and Strategies

Chapter Closure

Chapter 12: Analytic Trigonometry

Section 12.1

12.1.1 Analyzing Trigonometric Equations 

12.1.2 Solutions to Trigonometric Equations 

12.1.3 Inverses of Trigonometric Functions 

12.1.4 Reciprocal Trigonometric Functions 

Section 12.2

12.2.1 Trigonometric Identities

12.2.2 Proving Trigonometric Identities 

12.2.3 Angle Sum and Difference Identities

Chapter Closure

Appendix A: Sequences

Section A.1

A.1.1 Representing Exponential Growth 

A.1.2 Rebound Ratios 

A.1.3 The Bouncing Ball and Exponential Decay 

Section A.2

A.2.1 Generating and Investigating Sequences 

A.2.2 Generalizing Arithmetic Sequences 

A.2.3 Recursive Sequences 

Section A.3

A.3.1 Patterns of Growth in Tables and Graphs 

A.3.2 Using Multipliers to Solve Problems 

A.3.3 Comparing Sequences to Functions 

Appendix Closure

Appendix B: Exponential Functions

Section B.1

B.1.1 Investigation y = b

B.1.2 Multiple Representations of Exponential Functions 

B.1.3 More Applications of Exponential Growth 

B.1.4 Exponential Decay 

B.1.5 Graph → Equation 

B.1.6 Completing the Multiple Representations Web 

Section B.2

B.2.1 Curve Fitting and Fractional Exponents 

B.2.2 More Curve Fitting 

B.2.3 Solving a System of Exponential Functions Graphically 

Appendix Closure

Appendix C: Comparing Single-Variable Data

Section C.1

C.1.1 Investigating Data Representations 

C.1.2 Comparing Data 

C.1.3 Standard Deviation 

Appendix Closure

Core Connections en español, Álgebra

Capítulo 1 Funciones

Sección 1.1

1.1.1 Resolución de acertijos en equipo

1.1.2 Investigar el crecimiento de patrones

1.1.3 Investigación de los gráficos de funciones cuadráticas

Sección 1.2

1.2.1 Descripción de un gráfico

1.2.2 Raíz cúbica y funciones de valor absoluto

1.2.3 Máquinas de funciones

1.2.4 Funciones

1.2.5 Dominio y rango

Resumen del Capítulo

Capítulo 2 Relaciones lineales

Sección 2.1

2.1.1 Observación del crecimiento en las representaciones lineales

2.1.2 Pendiente

2.1.3 Comparación de Δy y Δx

2.1.4 y = mx + b y más información sobre pendientes

Sección 2.2

2.2.1 Pendiente como movimiento

2.2.2 Tasa de cambio

2.2.3 Ecuaciones de rectas en situaciones dadas

Sección 2.3

2.3.1 Hallar una ecuación a partir de la pendiente y un punto

2.3.2  Cómo hallar la ecuación de una recta que atraviesa dos puntos

Actividad de extensión  Cómo hallar y = mx + b a partir de gráficos y tablas

Resumen del Capítulo

Capítulo 3 Simplificar y resolver

Sección 3.1

3.1.1 Simplificación de expresiones exponenciales

3.1.2 Exponentes negativos eiguales a cero

Sección 3.2
3.2.1 Ecuaciones ↔ azulejos algebraicos

3.2.2 Exploración de modelos de área

3.2.3 Multiplicación de binomios y la Propiedad distributiva

3.2.4 Uso de rectángulos genéricos para multiplicar

Sección 3.3

3.3.1 Resolver ecuaciones conmultiplicaciones y valores absolutos

3.3.2 Trabajando con ecuaciones con múltiples variables

3.3.3 Resumen de la resolución de ecuaciones

Resumen del Capítulo

Capítulo 4 Sistemas de ecuaciones

Sección 4.1

4.1.1 Resolución de
problemas de palabras con

4.1.2 ¿Una ecuación o dos

Sección 4.2

4.2.1 Resolución de sistemas de ecuaciones por sustitución

4.2.2 Realizar conexiones: sistemas, soluciones, y gráficos

4.2.3 Resolución de sistemas por medio de la eliminación

4.2.4 Más información sobre el método de eliminación

4.2.5 Selección de una estrategia para la resolución de sistemas

Sección 4.3

4.3.1 Unificar todoResumen del Capítulo

Capítulo 5 Progresiones

Opening5.OPChapter Opening
Section 5.15.1.1Representing Fraction Multiplication
5.1.2Describing Parts of Parts
5.1.3Calculating Parts of Parts
5.1.4Multiplying Mixed Numbers
Section 5.25.2.1Making Sense of Decimal Multiplication
5.2.2Fraction Multiplication Number Sense
Section 5.35.3.1Rearranging Areas
5.3.2Area of a Parallelogram
5.3.3Area of a Triangle
5.3.4Area of a Trapezoid
Closure5.CLChapter Closure
Section 5.4 Mid-Course Reflection Activities

Capítulo 6 Modelos de datos con dos variables

Sección 6.1

6.1.1 Recta de mejor ajuste

6.1.2 Valores residuales 

6.1.3 Cota superior y cota inferior

6.1.4 Línea de regresión de mínimos cuadrados

Sección 6.2

6.2.1 Diagramas de valor residual

6.2.2 Correlación

6.2.3 Asociación no es causalidad

6.2.4 Interpretación de la correlación en contexto

6.2.5 Modelos de mejor ajuste curvos

Resumen del Capítulo

Capítulo 7 Funciones exponenciales

Sección 7.1

7.1.1 Investigar y = b x

7.1.2 Múltiples representaciones de funciones exponenciales

7.1.3 Más aplicaciones del crecimiento exponencial

7.1.4 Decaimiento exponencial

7.1.5 Gráfico → ecuación

7.1.6 Completar la red de representaciones múltiples

Sección 7.2

7.2.1 Curvas de ajuste y exponentes fraccionarios

7.2.2 Más curvas de ajuste

7.2.3 Resolución gráfica de un sistema de funciones exponenciales

Resumen del Capítulo

Capítulo 8 Funciones cuadráticas

Sección 8.1

8.1.1 Introducción a la factorización de expresiones cuadráticas

8.1.2 Factorización con rectángulos genéricos

8.1.3 Factorización en casos especiales

8.1.4 Factorizar completamente

8.1.5 Atajos de factorización

Sección 8.2

8.2.1 Múltiples representaciones de funciones cuadráticas

8.2.2 Propiedad de producto cero

8.2.3 Más formas de hallar puntos de corte con el eje x

8.2.4 Completar la red cuadrática

8.2.5 Completar cuadrados

Resumen del Capítulo

Capítulo 9 Resolución de ecuaciones cuadráticas y desigualdades

Sección 9.1

9.1.1 Resolución de ecuaciones cuadráticas

9.1.2 Introducción a la Fórmula cuadrática

9.1.3 Más ecuaciones cuadráticas

9.1.4 Elección de una estrategia

Sección 9.2

9.2.1 Resolución de desigualdades lineales de una variable

9.2.2 Más desigualdades

Sección 9.3

9.3.1 Graficación de desigualdades lineales con dos variables

9.3.2 Graficación de desigualdades lineales y no lineales

Sección 9.4

9.4.1 Sistemas de desigualdades

9.4.2 Más sistemas de desigualdades

9.4.3 Aplicación de desigualdades a la resolución de problemas

Resumen del Capítulo

Capítulo 10 Resolución de ecuaciones complejas

Sección 10.1

10.1.1 Asociaciones en tablas de doble entrada

Sección 10.2

10.2.1 Resolver reescribiend

10.2.2 Rompe fracciones

10.2.3 Múltiples métodos de resolución de ecuaciones

10.2.4 Determinar la cantidad de soluciones

10.2.5 Derivación de la Fórmula cuadrática y el sistema numérico

10.2.6 Más información sobre resolución y aplicaciones

Sección 10.3

10.3.1 Intersección de dos funciones

10.3.2 Cantidad de intersecciones de una parábola

10.3.3 Resolución de ecuaciones cuadráticas y con valores absolutos

Resumen del Capítulo

Capítulo 11 Funciones y datos

Sección 11.1

11.1.1 Transformación de funciones

11.1.2 Funciones inversas

Sección 11.2

11.2.1 Investigación de representaciones de datos

11.2.2 Comparación de datos

11.2.3 Desviación estándar

Sección 11.3

11.3.1 Uso de una recta de mejor ajuste para realizar predicciones

11.3.2 Búsqueda del tesoro de relaciones

11.3.3 Investigación de una función compleja

11.3.4 Uso del álgebra para hallar un máximo

11.3.5 Funciones exponenciales y desigualdades lineales

Resumen del Capítulo6

Apéndice Representación de expresiones

Sección A.1

A.1.1 Exploración de variables y agrupación de términos semejantes

A.1.2 Simplificación de expresiones combinando términos semejantes

A.1.3 Escritura de expresiones algebraicas

A.1.4 Uso del cero para simplificar expresiones algebraicas

A.1.5 Uso de azulejos algebraicos para simplificar expresiones algebraicas

A.1.6 Uso de azulejos algebraicos para comparar expresiones

A.1.7 Simplificación y registro del trabajo

A.1.8 Uso de azulejos algebraicos para resolver para
x

A.1.9 Más ecuaciones para resolver

Resumen del Apéndic

Core Connections en español, Geometría

Capítulo 1 Figuras y transformaciones

Sección1.1

1.1.1 Creación de una manta usando la simetría

1.1.2 Cómo hacer predicciones e investigar los resultados

1.1.3 Perímetro yárea de patrones de azulejos que se agrandan

1.1.4 Argumentos lógicos

1.1.5 Construcción de un caleidoscopio

Sección 1.2

1.2.1 Visualización espacial y reflexiones

1.2.2 Transformaciones rígidas: Rotaciones y traslaciones

1.2.3 Pendientes de rectas paralelas y perpendiculares

1.2.4 Definición de transformaciones

1.2.5 Uso de las transformaciones para crear formas

1.2.6 Simetría

Sección1.3

1.3.1 Atributos y características de las formas

1.3.2 Más características de las figuras

Resumen del Capítulo

Capítulo 2 Ángulos y medidas

Sección 2.1

2.1.1 Ángulos complementarios, suplementarios y opuestos por el vértice

2.1.2 Ángulos formados por transversales

2.1.3 Más ángulos formados por transversales

2.1.4 Ángulos de un triángulo

2.1.5 Aplicación de las relaciones entre ángulos1

Sección 2.2

2.2.1 Unidades de medida

2.2.2 Áreas de triángulos y figuras compuestas

2.2.3 Áreas de paralelogramos y trapecios

2.2.4 Alturas y áreas

Sección 2.3

2.3.1 Teorema de la desigualdad de un triángulo

2.3.2 El Teorema de Pitágoras

Resumen del Capítulo

Capítulo 3 Justificación y semejanzas

Sección 3.1

3.1.1 Dilatación

3.1.2 Semejanzas

3.1.3 Uso de las razones de semejanza

3.1.4 Aplicaciones y notación

Sección3.2

3.2.1 Condiciones de semejanza de triángulos

3.2.2 Creación de un diagrama de flujo

3.2.3 Semejanza entre triángulos y congruencia

3.2.4 Más condiciones de semejanza de triángulos

3.2.5 Determinar semejanzas

3.2.6 Aplicación de la semejanza

Resumen del Capítulo

Capítulo 4 Trigonometría y probabilidad

Sección4.1

4.1.1 Razones constantes en triángulos rectángulos

4.1.2 Relación entre razones de la pendiente y ángulos específicos

4.1.3 Ampliación de la tabla de trigonometría

4.1.4 La razón tangente

4.1.5 Aplicación de la razón tangente

Sección 4.2

4.2.1 Uso de un modelo de área

4.2.2 Uso de un diagrama de árbol

4.2.3 Modelos de probabilidad

4.2.4 Uniones, intersecciones y complementos

4.2.5Valor esperado

Resumen del Capítulo

Capítulo 5 Completando la caja de herramientas de triángulos

Sección5.1

5.1.1 Razones seno y coseno

5.1.2 Elección de una herramienta de trigonometría

5.1.3 Trigonometría inversa

5.1.4 Aplicaciones trigonométricas

Sección5.2

5.2.1 Triángulos rectángulos especiales

5.2.2 Ternas pitagóricas

Sección 5.3

5.3.1 Cómo hallar las partes faltantes de los triángulos

5.3.2 Ley de los senos

5.3.3 Ley de los cosenos

5.3.4 Triángulos ambiguos(Optativo)

5.3.5 Elección de una herramienta

Resumen del Capítulo

Capítulo 6 Triángulos congruentes

Sección6.1

6.1.1Triángulos congruentes

6.1.2 Condiciones para congruencia de triángulos

6.1.3 Congruencia de triángulos a través de transformaciones rígidas3526.1.4Diagramas de flujo para congruencia

6.1.5 Recíprocos

Sección6.2

6.2.1 Ángulos sobre una mesa de pool

6.2.2 Investigar un triángulo

6.2.3 Creación de un modelomatemático

6.2.4 Análisis de un juego

6.2.5 Uso de transformaciones y simetría para diseñar copos de nieve

Resumen del Capítulo

Capítulo 7 Demostración y cuadriláteros

Sección 7.1

7.1.1 Propiedades de un círculo

7.1.2 Construcción de un tetraedro

7.1.3 Problemas de distancia más corta

7.1.4 Uso de la simetría para el estudio de polígonos

Sección 7.2

7.2.1 Cuadriláteros especiales y demostraciones

7.2.2 Propiedades de los rombos

7.2.3 Más demostraciones con triángulos congruentes4297.2.4Más propiedades de los cuadriláteros

7.2.5 Demostraciones en dos columnas4387.2.6Explora-Conjetura-Demuestra

Sección 7.3

7.3.1 Estudio de cuadriláteros sobre una cuadrilla de coordenadas

7.3.2 Geometría en coordenadas y puntos medios

7.3.3 Cómo identificar cuadriláteros sobre una cuadrícula de coordenadas

Resumen del Capítulo

Capítulo 8 Polígonos y círculos

Sección 8.1

8.1.1 Molinillos y polígonos

8.1.2 Ángulos interiores de los polígonos

8.1.3 Ángulos de polígonos regulares

8.1.4 Conexiones de los ángulos de los polígonos regulares

8.1.5 Cómo calcular las áreas de polígonos regulares

Sección 8.2

8.2.1 Razones de área de figuras semejantes

8.2.2 Razones de semejanza

Sección 8.3

8.3.1 Una razón especial

8.3.2 Área y circunferencia de un círculo

8.3.3 Círculos en contexto

Resumen del Capítulo

Capítulo 9 Sólidos y construcciones

Sección 9.1

9.1.1Sólidos tridimensionales

9.1.2 Volúmenes y áreasde superficies de los prismas

9.1.3 Prismas y cilindros

9.1.4 Volúmenes de sólidos similares

9.1.5 Razones de semejanza

Sección 9.2

9.2.1 Introducción a las construcciones5529.2.2Construcción de bisectrices

9.2.3 Más exploraciones con construcciones

9.2.4 Otras construcciones

Resumen del Capítulo

Capítulo 10 Círculos y probabilidad condicional

Sección 10.1

10.1.1 Introducción a las cuerdas

10.1.2 Ángulos y arcos

10.1.3 Cuerdas y ángulos

10.1.4 Tangentes y secantes

10.1.5 Resolver problemas con círculos

Sección 10.2

10.2.1 Probabilidad condicional e independencia’

10.2.2 Tablas de doble entrada

10.2.3 Aplicaciones de probabilidad

Sección10.3

10.3.1 El Principio fundamental de conteo

10.3.2 Permutaciones

10.3.3 Combinaciones

10.3.4 Categorizar problemas de conteo

10.3.5 Algunos problemas de probabilidad desafiantes

Resumen del Capítulo

Capítulo 11 Sólidos y círculos

Sección11.1

11.1.1 Sólidos platónicos

11.1.2 Pirámides

11.1.3 Volumen de una pirámide

11.1.4 Área de superficie y volumen de un cono

11.1.5 Área de superficie y volumen de una esfera

Sección 11.2

11.2.1 Coordenadas en una esfera

11.2.2 Tangentes y arcos

11.2.3 Relaciones de secantes y tangentes

Resumen del Capítulo

Capítulo 12 Figuras cónicas y cierre

Sección 12.1

12.1.1 La ecuación de un círculo

12.1.2 Técnica de completar cuadrados para las ecuaciones de círculos

12.1.3 Introducción a las secciones cónicas

12.1.4 Graficación de una parábola usando el foco y la directriz

Sección 12.2

12.2.1 Uso de la geometría en coordenadas y las construcciones para explorar las formas

12.2.2 La Fórmula de los poliedros de Euler

12.2.3 La razón áurea

12.2.4 Uso de la geometría para hallar probabilidades

Resumen del Capítulo

Core Connections en español, Álgebra 2

Capítulo 1 Investigaciones y funciones

Sección 1.1

1.1.1 Resolución de acertijos en equipo

1.1.2 Cómo usar una calculadora gráfica para explorar una función

1.1.3 Dominioy rango

1.1.4 Puntos de intersección en representaciones múltiples

Sección 1.2

1.2.1 Modelado de una relación geométrica

1.2.2 Investigación de funciones

1.2.3 La familia de funciones lineales

1.2.4 Reto de investigación de funciones

Resumen del Capítulo

Capítulo 2 Transformación de gráficos madre

Sección 2.1

2.1.1 Modelado de datos no lineales

2.1.2 Investigación sobre parábolas

2.1.3 Graficar una parábola sin una tabla

2.1.4 Reescribir en la forma de graficación

2.1.5 Modelación matemática con parábolas

Sección 2.2

2.2.1 Transformación de otros gráficos madre

2.2.2 Descripción de (h, k) para cada familia de funciones

2.2.3 Transformaciones de funciones

2.2.4 Transformación de ecuaciones que no son funciones

2.2.5 Transformación de funciones seccionadas

Resumen del Capítulo

Capítulo 3 Formas equivalentes

Sección 3.1

3.1.1 Expresiones equivalentes

3.1.2 Reescribir expresiones y determinar equivalencias

3.1.3 Resolver reescribiendo

Sección 3.2

3.2.1 Investigación de funciones racionales

3.2.2 Simplificación de expresiones racionales

3.2.3 Multiplicación y división de expresiones racionales

3.2.4 Suma y resta de expresiones racionales1503.2.5Creación de nuevas funciones

Resumen del Capítulo

Capítulo 4 Resolución de problemas e intersecciones

Sección 4.1

4.1.1 Estrategias de resolución de ecuaciones

4.1.2 Resolución de ecuaciones y sistemas en forma gráfica

4.1.3 Hallar múltiples soluciones a sistemas de ecuaciones

4.1.4 Uso de sistemas de ecuaciones para resolver problemas

Sección 4.2

4.2.1 Resolución de desigualdades con una o dos variables

4.2.2 Uso de sistemas para resolver un problema

4.2.3 Aplicación de los sistemas de desigualdades lineales

4.2.4 Uso de gráficos para hallar soluciones

Resumen del Capítulo

Capítulo 5 Inversas y logaritmos

Sección 5.1

5.1.1 “Deshacer” ecuaciones

5.1.2 Usar un gráfico para hallar una inversa

5.1.3 Hallar inversas y justificar algebraicamente

Sección 5.2

5.2.1 Hallar la inversa de una función exponencial

5.2.2 Definir la inversa de una función exponencial

5.2.3 Investigar la familia de funciones logarítmicas

5.2.4 Transformaciones de funciones logarítmicas

5.2.5 Investigar composiciones de funciones

Resumen del Capítulo

Capítulo 6 Graficación en 3D y logaritmos

Sección 6.1

6.1.1 Creación de un modelo tridimensional

6.1.2 Graficación de ecuaciones en tres dimensiones

6.1.3 Sistemas de tres ecuaciones variables

6.1.4 Resolución de sistemas de tres ecuaciones con tres incógnitas

6.1.5 Empleo de sistemas de tres ecuaciones para curvas de ajuste

Sección 6.2

6.2.1 Uso de logaritmos para resolver ecuaciones exponenciales

6.2.2 Investigación de las propiedades de los logaritmos

6.2.3 Escritura de ecuaciones de funciones exponenciales

6.2.4 Una aplicación de los logaritmos

Resumen del Capítulo

Capítulo 7 Funciones trigonométricas

Sección 7.1

7.1.1 Introducción a los modelos cíclicos

7.1.2 Cómo graficar la función seno

7.1.3 Círculo de unidad↔Gráfico

7.1.4 Cómo graficar e interpretar la función coseno

7.1.5 Definición de radián

7.1.6 Construcción de un círculo de unidad

7.1.7 La función tangente

Sección 7.2

7.2.1 Transformaciones de y= sen x

7.2.2 Un parámetro más para una función cíclica

7.2.3 Período de una función cíclica

7.2.4 Gráfico↔Ecuación

Resumen del Capítulo

Capítulo 8 Polinomios

Sección 8.1

8.1.1 Cómo graficar funciones polinómicas 

8.1.2 Más gráficos de polinomios 

8.1.3 Factores de estiramiento para funciones polinómicas 

Sección 8.2

8.2.1 Introducción a los números imaginarios 

8.2.2 Raíces complejas 

8.2.3 Más números complejos y ecuaciones 

Sección 8.3

8.3.1 División de polinomios 

8.3.2 Factores y raíces enteras 

8.3.3 Una aplicación de polinomios 

Resumen del Capítulo

Capítulo 9 Aleatorización y distribuciones normales

Sección 9.1

9.1.1 Diseño de encuestas

9.1.2 Muestras y el rol de la aleatorización

9.1.3 Sesgo en muestras por conveniencia

Sección 9.2

9.2.1 Probando la causa y el efecto con experimentos

9.2.2 Conclusiones a partir de estudios

Sección 9.3

9.3.1 Histogramas de frecuencia relativa

9.3.2 La función de densidad de probabilidad normal

9.3.3 Percentiles

Resumen del Capítulo

Capítulo 10 Series

Sección 10.1

10.1.1 Introducción a las series aritméticas

10.1.2 Más series aritméticas

10.1.3 Series aritméticas generales

10.1.4 Notación de suma y combinaciones de series

Sección10.2

10.2.1 Series geométricas

10.2.2 Series infinitas

Sección10.3

10.3.1 El triángulo de Pascal y el Teorema del binomio

10.3.2 El númeroe

Resumen del Capítulo

Capítulo 11 Simulación de la variabilidad muestral

Sección 11.1

11.1.1 Simulaciones de probabilidad

11.1.2 Más simulaciones de probabilidad

11.1.3 Simulación de la variabilidad muestral

Sección 11.2

11.2.1 Evaluación estadística usando la variabilidad muestral

11.2.2 Variabilidad en los resultados experimentales

11.2.3 Control de calidad

11.2.4 Control estadístico de procesos

Sección 11.3

11.3.1 Análisis de decisiones y estrategias

Resumen del Capítulo

Capítulo 12 Trigonometría analítica

Sección 12.1

12.1.1 Analizando ecuaciones trigonométricas

12.1.2 Soluciones de las ecuaciones trigonométricas

12.1.3 Inversas de las funciones trigonométricas

12.1.4 Funciones trigonométrica recíprocas

Sección 12.2 12.2.1 Identidades trigonométricas

12.2.2 Demostrando identidades trigonométricas

12.2.3 Identidades de suma y diferencia de ángulos

Resumen del Capítulo

Apéndice A Progresiones

Sección A.1

A.1.1 Representación del crecimiento exponencia

A.1.2 Razones de rebote

A.1.3 El balón que rebota y el decaimiento exponencial

Sección A.2

A.2.1 Generación e investigación de progresiones

A.2.2 Generalización de progresiones aritméticas

A.2.3 Progresiones recurrentes

SecciónA.3

A.3.1 Patrones de crecimiento en tablas y gráficos

A.3.2 Uso de multiplicadores para resolver problemas

‘A.3.3 Comparación de progresiones y funciones

Resumen del Apéndice

Apéndice B Funciones exponenciales

Sección B.1

B.1.1 Investigar y= bx

B.1.2 Múltiples representaciones de funciones exponenciales

B.1.3 Más aplicaciones del crecimiento exponencial

B.1.4 Decaimiento exponencial

B.1.5 Gráfico →ecuación

B.1.6 Completar la red de representaciones múltiples

Sección B.2

B.2.1 Curvas de ajuste y exponentes fraccionariosB31B.2.2Más curvas de ajuste

B.2.3 Resolución gráfica de un sistema de funciones exponenciales

Resumen del Apéndice

Apéndice C Comparación de datos de una variable

Sección C.1

C.1.1 Investigación de representaciones de datos

C.1.2 Comparación de datos

C.1.3 Desviación estándar

Integrated I

Chapter 1 Functions

Section 1.1

1.1.1 Solving Puzzles in Teams

1.1.2 Investigating the Growth of Patterns

1.1.3 Multiple Representations of Functions

Section 1.2

1.2.1 Function Machines

1.2.2 Functions

1.2.3 Domain and Range

Section 1.3

1.3.1 Rewriting Expressions with Exponents

1.3.2 Zero and Negative Exponents

Chapter Closure

Chapter 2 Linear Function

Section 2.1

2.1.1 Seeing Growth in Linear Functions

2.1.2 Comparing Δy and Δx

2.1.3 Slope

2.1.4 y= mx+ band More on Slope

Section 2.2

2.2.1 Modeling Linear Functions

2.2.2 Rate of Change

2.2.3 Equations of Lines in a Situation

2.2.4 Dimensional Analysis

Section 2.3

2.3.1 WritingtheEquation of a Line Given theSlope and a Point

2.3.2 Writingthe Equation of a Line Through Two Points

2.3.3 Writing y= mx+ b from Graphs and Tables

Chapter Closure

Chapter 3 Transformations and Solving

Section 3.1

3.1.1 Spatial Visualization and Reflections

3.1.2 Rotations and Translations

3.1.3 Slopes of Parallel and Perpendicular Lines

3.1.4 Defining Rigid Transformations

3.1.5 Using Transformations to Create Polygons

3.1.6 Symmetry

Section 3.2

3.2.1 Modeling Area and Perimeter with Algebra Tiles

3.2.2 Exploring an Area Model

3.2.3 Multiplying Polynomials and the Distributive Property

Section 3.3

3.3.1 Multiple Methods for Solving Equations

3.3.2 Fraction Busters

3.3.3 Solving Exponential and Complex Equations

Chapter Closure

Chapter 4 Modeling Two - Variable Data

Section 4.1 

4.1.1 Line of Best Fit

4.1.2 Residuals

4.1.3 Upper and Lower Bounds

4.1.4 Least Squares Regression Line

Section 4.2 

4.2.1 Residual Plots

4.2.2  Correlation

4.2.3 Association is Not Causation

4.2.4 Interpreting Correlation in Context

Chapter Closure

Chapter 5 Sequences

Section 5.1

5.1.1 Representing Exponential Growth

5.1.2 Rebound Ratios

5.1.3 The Bouncing Ball and Exponential Decay

Section 5.2

5.2.1 Generating and Investigating Sequences

5.2.2 Generalizing Arithmetic Sequences

5.2.3 Recursive Sequences

Section 5.3

5.3.1 ComparingGrowth in Tables and Graphs

5.3.2 Using Multipliers to Solve Problems

5.3.3 Comparing Sequences to Functions

Chapter Closure

Chapter 6 Systems of Equations

Section 6.1

6.1.1 Working with Multi-Variable Equations

6.1.2 Summary of SolvingEquations

6.1.3 Solving Word Problems by Using Different Representations

6.1.4 Solving WordProblems by Writing Equations

Section 6.2

6.2.1 Solving Systems of Equations Using the Equal ValuesMethod

6.2.2 Solving Systems of Equations Using Substitution

6.2.3 Making Connections: Systems andMultiple Representation

Section 6.3

6.3.1 Solving Systems Using Elimination

6.3.2 More Elimination

6.3.3 Making Connections: Systems, Solutions, and Graphs

Section 6.4

6.4.1 Choosing a Strategy for Solving a System

6.4.2 Pulling it all Together

Chapter Closure

Chapter 7 Congruence and Coordinate Geometry

Section 7.1

7.1.1 Defining Congruence

7.1.2 Conditions for Triangle Congruence

7.1.3 Creating a Flowchart

7.1.4 Justifying Triangle CongruenceUsing Flowcharts

7.1.5 More Conditions for Triangle Congruence

7.1.6 Congruence of Triangles Through Rigid Transformations3947.1.7More Congruence Flowcharts

Section 7.2

7.2.1 Studying Quadrilaterals on a Coordinate Grid

7.2.2 Coordinate Geometry and Midpoints4

7.2.3 Identifying Quadrilaterals on a Coordinate Grid

Chapter Closure

Chapter 8 Exponential Functions

Section 8.1

8.1.1 Investigating

8.1.2 Multiple Representations of Exponential Functions

8.1.3 More Applications of Exponential Functions

8.1.4 Exponential Decay

8.1.5 Graph →Equation

8.1.6 Completing the Multiple Representations Web

Section 8.2

8.2.1 Curve Fitting

8.2.2 Curved Best-Fit Models

8.2.3 Solving a System of Exponential Functions Graphically

Chapter Closure

Chapter 9 Inequalities

Section 9.1

9.1.1 Solving Linear, One-Variable Inequalities

9.1.2 More Solving Inequalities

9.1.3 Solving Absolute Value Equations and Inequalities

Section 9.2

9.2.1 Graphing Two-Variable Inequalities

9.2.2 Graphing Linear and Nonlinear Inequalities

Section 9.3

9.3.1 Systems of Inequalities

9.3.2 More Systems of Inequalities

9.3.3 Applying Inequalities to Solve Problems

Chapter Closure

Chapter 10 Functions and Data

Section 10.1

10.1.1 Association in Two-Way Tables

10.1.2 Investigating Data Representations

10.1.3 Comparing Data

10.1.4 Standard Deviation

Section 10.2

10.2.1 Transforming Functions

10.2.2 Arithmetic Operations with Functions

10.2.3 Proving Linear and Exponential GrowthPatterns

Chapter Closure

Chapter 11 Constructions and Closure

Section 11.1 11.1.1 Introduction to Constructions

11.1.2 Constructing Bisectors

11.1.3 More Explorations with Constructions

Section 11.2

11.2.1 Solving Work and Mixing Problems

11.2.2 Solving Equations and Systems Graphically

11.2.3 Using a Best-Fit Line to Make a Prediction

11.2.4 Treasure Hunt

11.2.5 Using Coordinate Geometry and Constructions to Explore Shapes

11.2.6 Modeling with Exponential Functions and Linear Inequalities

Chapter Closure

Appendix Solving Equations

Section A.1

A.1.1 Exploring Variables and Expressions

A.1.2 Using Zero to Simplify Algebraic Expressions

A.1.3 Using Algebra Tiles to Compare Expressions

A.1.4 Justifying and Recording Work

A.1.5 Using Algebra Tiles to Solve for x

A.1.6 More Solving Equations

A.1.7 Checking Solutions

A.1.8 Determining the Number of Solutions

A.1.9 UsingEquations to Solve Problems

Appendix Closure

Checkpoint Materials

Checkpoint1: Solving Linear Equations, Part 1 (Integer Coefficients)

Checkpoint 2: Evaluating Expressions and the Order of Operations

Checkpoint 3: Operations with Rational Numbers

Checkpoint 4: Laws of Exponents and Scientific Notation

Checkpoint 5: Writing the Equation of a Line

Checkpoint 6A: Solving Linear Equations, Part 2 (Fractional Coefficients)

Checkpoint 6B: Multiplying Binomials and Solving Equations with Parentheses

Checkpoint 7: Interpreting Associations

Checkpoint 8A: Rewriting Equations with More Than One Variable

Checkpoint 8B: Solving Problems by Writing Equations

Checkpoint 9: Solving Linear Systems of Equations

Checkpoint 10: Determining Congruent Triangles

Checkpoint 11: The Exponential Web

Integrated II

Chapter 1: Exploring Algebraic and Geometric Relationships

Section 1.1

1.1.1  Attributes of Polygons

1.1.2 More Attributes of Polygons

Section 1.2

1.2.1 Making Predictions and Investigating Results

1.2.2 Perimeters and Areas of Enlarging Patterns

11.2.3 Area as a Product and a Sum

1.2.4 Describing a Graph

Section 1.3

1.3.1 Angle Pair Relationships

1.3.2 Angles Formed by Transversals

1.3.3 More Angles Formed by Transversals

1.3.4 Angles and Sides of a Triangle

Chapter Closure

Chapter 2: Justification and Similarity

Section 2.1

2.1.1 Triangle Congruence Theorems

2.1.2 Flowcharts for Congruence

2.1.3 Converses

2.1.4 Proof by Contradiction

Section 2.2

2.2.1 Dilations

2.2.2 Similarity

Section 2.3

2.3.1 Conditions for Triangle Similarity

2.3.2 Determining Similar Triangles

2.3.3 Applying Similarity

2.3.4 Similar Triangle Proofs

Chapter Closure

Chapter 3: Probability and Trigonometry

Section 3.1

3.1.1 Using an Area Model

3.1.2 Using a Tree Diagram

3.1.3 Probability Models

3.1.4 Unions, Intersections, and Complements

3.1.5 Expected Value

Section 3.2

3.2.1 Constant Ratios in Right Triangles

3.2.2 Connecting Slope Ratios to Specific Angles

3.2.3 Expanding the Trig Table

3.2.4 The Tangent Ratio

3.2.5 Applying the Tangent Ratio

Chapter Closure

Chapter 4: Factoring and More Trigonometry

Section 4.1

4.1.1 Introduction to Factoring Expressions

4.1.2 Factoring with Area Models

4.1.3 Factoring More Quadratics

4.1.4 Factoring Completely

4.1.5 Factoring Special Cases

Section 4.2

4.2.1 Sine and Cosine Ratios

4.2.2 Selecting a Trig Tool

4.2.3 Inverse Trigonometry

4.2.4 Trigonometric Applications

Chapter Closure

Chapter 5: Quadratic Functions

Section 5.1

5.1.1 Investigating the Graphs of Quadratic Functions

5.1.2 Multiple Representations of Quadratic Functions

5.1.3 Zero Product Property

5.1.4 Writing Equations for Quadratic Functions

5.1.5 Completing the Quadratic Web

Section 5.2

5.2.1 Perfect Square Equations

5.2.2 Completing the Square

5.2.3 More Completing the Square

5.2.4 Introduction to the Quadratic Formula

5.2.5 Solving and Applying Quadratic Equations

5.2.6 Introducing Complex Numbers

Chapter Closure

Chapter 6: More Right Triangles

Section 6.1

6.1.1 Special Right Triangles

6.1.2 Pythagorean Triples

6.1.3 Special Right Triangles and Trigonometry

6.1.4 Radicals and Fractional Exponents

Section 6.2

6.2.1 At Your Service

6.2.2 Angles on a Pool Table

6.2.3 Shortest Distance Problems

6.2.4 The Number System and Deriving the Quadratic Formula

6.2.5 Using Algebra to Find a Maximum

6.2.6 Analyzing a Game

Chapter Closure

Chapter 7: Proof and Conditional Probability

Section 7.1

7.1.1 Explore-Conjecture-Prove

7.1.2 Properties of Rhombi

7.1.3 Two Column Proofs

7.1.4 More Geometric Proofs

7.1.5 Using SimilarTriangles to Prove Theorems

Section 7.2

7.2.1 Conditional Probability and Independence

7.2.2 More Conditional Probability

7.2.3 Applications of Probability

Chapter Closure

Chapter 8: Polygons and Circles

Section 8.1

8.1.1 Constructing Triangle Centers

Section 8.2

8.2.1 Angles of Polygons

8.2.2 Areas of Regular Polygons

Section 8.3

8.3.1 Area Ratios of Similar Figures

8.3.2 Ratios of Similarity

Section 8.4

8.4.1 A Special Ratio

8.4.2 Arcs and Sectors

8.4.3 Circles in Context

Chapter Closure

Chapter 9: Modeling with Functions

Section 9.1

9.1.1 Modeling Nonlinear Data

9.1.2 Parabola Investigation

9.1.3 Graphing Form of a Quadratic Function

9.1.4 Transforming the Absolute Value Function

Section 9.2

9.2.1 Quadratic Applications with Inequalities

9.2.2 Solving Systems of Equations

Section 9.3

9.3.1 Average Rate of Change and Projectile Motion5099.3.2Comparing the Growth of Functions

9.3.3 Piecewise-Defined Functions

9.3.4 Combining Functions

Section 9.4

9.4.1 Inverse Functions

Chapter Closure

Chapter 10: Circles and More

Section 10.1

10.1.1 The Equation of a Circle

10.1.2 Completing the Square for Equations of Circles

10.1.3 The Geometric Definition of a Parabola

Section 10.2

10.2.1 Introduction to Chords

10.2.2 Angles and Arcs

10.2.3 Chords and Angles

10.2.4 Tangents

10.2.5 Tangents and Arcs

Chapter Closure

Chapter 11: Solids

Section 11.1

11.1.1 Prisms and Cylinders

11.1.2 Volumes of Similar Solids

11.1.3 Ratios of Similarity

Section 11.2

11.2.1 Volume of a Pyramid

11.2.2 Surface Area and Volume of a Cone

11.2.3 Surface Area and Volume of a Sphere

Chapter Closure

Chapter 12: Counting and Closure

Section 12.1

12.1.1 The Fundamental Counting Principle

12.1.2 Permutations

12.1.3 Combinations

12.1.4 Categorizing Counting Problems

Section 12.2

12.2.1 Using Geometry to CalculateProbabilities

12.2.2 Choosing a Model

12.2.3 The Golden Ratio

12.2.4 Some Challenging Probability Problems

Chapter Closure

Checkpoint Materials

Checkpoint 1: Solving Problems with Linear and Exponential Relationships

Checkpoint 2: Calculating Areas and Perimeters of Complex Shapes 

Checkpoint 3: Angle Relationships in Geometric Figures 

Checkpoint 4: Solving Proportions and Similar Figures 

Checkpoint 5: Calculating Probabilities 

Checkpoint 7: Factoring Quadratic Expressions 

Checkpoint 8: Applying Trigonometric Ratios and the Pythagorean Theorem 

Checkpoint 9: The Quadratic Web 

Checkpoint 10: Solving Quadratic Equations 

Checkpoint 11: Angle Measures and Areas of Regular Polygons 

Checkpoint 12: Circles, Arcs, Sectors, Chords, and Tangents

Integrated III

Chapter 1: Investigations and Functions

Section 1.1

1.1.1 Solving a Function Puzzle in Teams

1.1.2 Using a Graphing Calculator to Explore a Function

1.1.3 Function Investigation

1.1.4 Combining Linear Functions

Section 1.2

1.2.1Representing Points of Intersection

1.2.2 Modeling a Geometric Relationship

1.2.3 Describing Data

Chapter Closure

Chapter 2:Transformations of Parent Graphs

Section 2.1

2.1.1 Transforming Quadratic Functions

2.1.2 Modeling with Parabolas

Section 2.2

2.2.1 Transforming Other Parent Graphs

2.2.2 Describing (h,k) for Each Family of Functions

2.2.3 Transformations of Functions 2.2.4 TransformingNon-Functions

2.2.5 Developing a Mathematical Model

Section 2.3

2.3.1 Completing the Square

Chapter Closure

Chapter 3: Solving and Inequalities

Section 3.1

3.1.1 Strategies for Solving Equations

3.1.2 Solving Equations Graphically

3.1.3 Multiple Solutions to Systems of Equations

3.1.4 Using Systems of Equations to Solve Problems

Section 3.2

3.2.1 Solving Inequalities with One or Two Variables

3.2.2 Using Systems to Solve a Problem

3.2.3 Applications of Systems of Inequalities

3.2.4 Using Graphs to DetermineSolutions

Chapter Closure

Chapter 4: Normal Distributions and Geometric Modeling

Section 4.1

4.1.1 Survey Design

4.1.2Samples and the Role of Randomness

4.1.3 Bias in Convenience Samples

Section 4.2

4.2.1 Testing Cause and Effect with Experiments

4.2.2 Conclusions from Studies

Section 4.3

4.3.1Relative Frequency Histograms

4.3.2 The Normal Probability Density Function

4.3.3 Percentiles

Section 4.4

4.4.1 Cross-Sections and Solids of a Revolution

4.4.2 Modeling with Geometric Solids

4.4.3 Designing to Meet Constraints

Chapter Closure

Chapter 5: Inverses and Logarithms

Section 5.1

5.1.1 “Undo” Equations

5.1.2 Using a Graph to Find an Inverse

5.1.3 More Inverse Functions

Section 5.2

5.2.1 TheInverse of an Exponential Function

5.2.2 Defining the Inverse of an Exponential Function

5.2.3 Investigating the Family of Logarithmic Functions

5.2.4 Transformations of Logarithmic Functions

Chapter Closure

Chapter 6: Simulating Sampling Variability

Section 6.1

6.1.1 Simulations of Probability

6.1.2 More Simulations of Probability

6.1.3 Simulating Sampling Variability

Section 6.2

6.2.1 Statistical Test Using Sampling Variability

6.2.2 Variability in Experimental Results

6.2.3 Quality Control

6.2.4 Statistical Process Control

Section 6.3

6.3.1 Analyzing Decisions and Strategies

Chapter Closure

Chapter 7: Logarithms and Triangles

Section 7.1

7.1.1 Using Logarithms to Solve Exponential Equations

7.1.2 Investigating the Properties of Logarithms

7.1.3 Writing Equations of Exponential Functions

7.1.4 An Application of Logarithms

Section 7.2

7.2.1 Determining Missing Parts of Triangles

7.2.2 Law of Sines

7.2.3 Law of Cosines

7.2.4 The Ambiguous Case

7.2.5 Choosing a Tool

Chapter Closure

Chapter 8: Polynomials

Section 8.1

8.1.1 Sketching Graphs of Polynomial Functions

8.1.2 More Graphs of Polynomial Functions

8.1.3 Stretch Factors for Polynomial Functions

Section 8.2

8.2.1 Writing Equations Using Complex Roots

8.2.2 More Real and Complex Roots

Section 8.3

8.3.1 Polynomial Division

8.3.2 Factors and Rational Zeros

8.3.3 An Application of Polynomials

8.3.4 Special Cases of Factoring

Chapter Closure

Chapter 9: Trigonometric Functions

Section 9.1

9.1.1 Introductions to Periodic Models

9.1.2 Graphing the Sine Functions

9.1.3 Unit Circle ↔Graph

9.1.4 Graphing and Interpreting the Cosine Function

9.1.5 Defining a Radian

9.1.6 Building a Unit Circle

9.1.7 The Tangent Function

Section 9.2 9.2.1 Transformations of y= sin(x)

9.2.2 One More Parameter for a Periodic Function

9.2.3 Period of a Trigonometric Function

9.2.4 Graph ↔Equation

Chapter Closure

Chapter 10: Series

Section 10.1

10.1.1 Introduction to Arithmetic Series

10.1.2 More Arithmetic Series

10.1.3  General Arithmetic Series

10.1.4 Summation Notation and Combinations of Series

10.1.5 Mathematical Induction

Section 10.2

]10.2.1 Geometric Series

10.2.2 Infinite Series

Section 10.3

10.3.1 Using a Binomial Probability Model

10.3.2 Pascal’s Triangle and the Binomial Theorem

10.3.3 The Number e

Chapter Closure

Chapter 11: Rational Expressions and Three-Variable Systems

Section 11.1

11.1.1 Simplifying Rational Expressions

11.1.2 Multiplying and Dividing Rational Expressions

11.1.3 Adding and Subtracting Rational Expressions

11.1.4 Operations with Rational Expressions

Section 11.2

11.2.1 Creating a Three-Dimensional Model

11.2.2 Graphing Equations in Three Dimensions

11.2.3 Solving Systems of Three Equations with Three Variables

11.2.4 Using Systems of Three Equations for Curve Fitting

Chapter Closure

Chapter 12: Analytic Trigonometry

Section 12.1

12.1.1 Analyzing Trigonometric Equations

12.1.2 Solutions to TrigonometricEquations

12.1.3 Inverses of Trigonometric Functions

12.1.4 Reciprocal Trigonometric Functions

Section 12.2

12.2.1 Trigonometric Identities

12.2.2 Proving Trigonometric Identities

12.2.3 Angle Sum and Difference Identities

Chapter Closure

Checkpoint Materials

Checkpoint 2: Solving Quadratic Equations

Checkpoint 3: Function Notation and Describing a Function

Checkpoint 4: Expressions with Integer and Rational Exponents

Checkpoint 5: Transformations of Functions

Checkpoint 6: Solving Complicated Equations and Systems

Checkpoint 7: Solving and Graphing Inequalities

Checkpoint 8: Determining the Equation for the Inverse of a Function

Checkpoint 9A: Solving Equations with Exponents

Checkpoint 9B: Rewriting Expressions and Solving Equations with Logarithms

Checkpoint 10: Solving Triangles

Checkpoint 11: Roots and Graphs of Polynomial Functions

Checkpoint 12: Periodic Functions

Matemática
Integrada I

Capítulo 1 Funciones

Opening1.OPChapter Opening
Section 1.11.1.1Visualizing Information
1.1.2Perimeter and Area Relationships
1.1.3Describing and Extending Patterns
1.1.4Representing Data
1.1.5Making Sense of a Logic Problem
Section 1.21.2.1Multiple Representations
1.2.2Representing Comparisons
1.2.3Characteristics of Numbers
1.2.4Products, Factors, and Factor Pairs
Section 1.31.3.1Attributes and Characteristics of Shapes
1.3.2More Characteristics of Shapes
Closure1.CLChapter Closure

Capítulo 2 Funciones lineales

Opening2.OPChapter Opening
Section 2.12.1.1Dot Plots and Bar Graphs
2.1.2Histograms and Stem-and-Leaf Plots
Section 2.22.2.1Exploring Area
2.2.2Square Units and Area of Rectangles
2.2.3Area and Perimeter
Section 2.32.3.1Using Rectangles to Multiply
2.3.2Using Generic Rectangles
2.3.3Distributive Property
2.3.4Generic Rectangles and the Greatest Common Factor
Closure2.CLChapter Closure

Capítulo 3 Transformaciones y soluciones

Opening3.OPChapter Opening
Section 3.13.1.1Using the Multiplicative Identity
3.1.2Portions as Percents
3.1.3Connecting Percents with Decimals and Fractions
3.1.4Multiple Representations of a Portion
3.1.5Completing the Web
3.1.6Investigating Ratios
Section 3.23.2.1Addition, Subtraction, and Opposites
3.2.2Locating Negative Numbers
3.2.3Absolute Value
3.2.4Length on a Coordinate Graph
Closure3.CLChapter Closure

Capítulo 4 Modelos de datos con dos variables

Opening4.OPChapter Opening
Section 4.14.1.1Introduction to Variables
4.1.2Writing Equivalent Expressions
4.1.3Using Variables to Generalize
Section 4.24.2.1Enlarging Two-Dimensional Shapes
4.2.2Enlarging and Reducing Figures
4.2.3Enlargement and Reduction Ratios
4.2.4Ratios in Other Situations
Closure4.CLChapter Closure

Capítulo 5 Progresiones

Opening5.OPChapter Opening
Section 5.15.1.1Representing Fraction Multiplication
5.1.2Describing Parts of Parts
5.1.3Calculating Parts of Parts
5.1.4Multiplying Mixed Numbers
Section 5.25.2.1Making Sense of Decimal Multiplication
5.2.2Fraction Multiplication Number Sense
Section 5.35.3.1Rearranging Areas
5.3.2Area of a Parallelogram
5.3.3Area of a Triangle
5.3.4Area of a Trapezoid
Closure5.CLChapter Closure
Section 5.4 Mid-Course Reflection Activities

Capítulo 6 Sistemas de ecuaciones

Opening6.OPChapter Opening
Section 6.16.1.1Dividing
6.1.2Fractions as Division Problems
6.1.3Problem Solving with Division
6.1.4Solving Problems Involving Fraction Division
Section 6.26.2.1Order of Operations
6.2.2Area of a Rectangular Shape
6.2.3Naming Perimeters of Algebra Tiles
6.2.4Combining Like Terms
6.2.5Evaluating Algebraic Expressions
Closure6.CLChapter Closure

Capítulo 7 Congruencia y geometría en coordenadas

Opening7.OPChapter Opening
Section 7.17.1.1Comparing Rates
7.1.2Comparing Rates with Tables and Graphs
7.1.3Unit Rates
Section 7.27.2.1Analyzing Strategies for Dividing Fractions
7.2.2Another Strategy for Division
7.2.3Division with Fractions and Decimals
7.2.4Fraction Division as Ratios
Section 7.37.3.1Inverse Operations
7.3.2Distributive Property
7.3.3Distributive Property and Expressions Vocabulary
7.3.4Writing Algebraic Equations and Inequalities
Closure7.CLChapter Closure

Capítulo 8 Funciones exponenciales

Opening8.OPChapter Opening
Section 8.18.1.1Measures of Central Tendency
8.1.2Choosing Mean or Median
8.1.3Shape and Spread
8.1.4Box Plots and Interquartile Range
8.1.5Comparing and Choosing Representations
Section 8.28.2.1Statistical Questions
Section 8.38.3.1Writing Multiplication Equations
8.3.2Distance, Rate, and Time
8.3.3Unit Conversion
Closure8.CLChapter Closure

Capítulo 9 Desigualdades

Opening9.OPChapter Opening
Section 9.19.1.1Volume of a Rectangular Prism
9.1.2Nets and Surface Area
Section 9.29.2.1Multiplicative Growth and Percents
9.2.2Composition and Decomposition of Percents
9.2.3Percent Discounts
9.2.4Simple Interest and Tips
Closure9.CLChapter Closure
Section 9.39.3.1A Culminating Portions Challenge
9.3.2Representing and Predicting Patterns
9.3.3Analyzing Data to Identify a Trend

Capítulo 10 Funciones y datos

CP 1: Using Place Value to Round and Compare Decimals

CP 2: Addition and Subtraction of Decimals

CP 3: Addition and Subtraction of Fractions

CP 4: Addition and Subtraction of Mixed Numbers

CP 5: Multiple Representations of Portions

P 6: Locating Points on a Number Line and on a Coordinate Graph

CP 7A: Multiplication of Fractions and Decimals

CP 7B: Area and Perimeter of Quadrilaterals and Triangles

CP 8A: Rewriting and Evaluating Variable Expressions

CP 8B: Division of Fractions and Decimals

CP 9A: Displays of Data: Histograms and Box Plots

CP 9B: Solving One-Step Equations

 

Capítulo 11 Construcciones y cierre

Section 11.1

11.1.1 Platonic Solids 

11.1.2 Pyramids 

11.1.3 Volume of a Pyramid 

11.1.4 Surface Area and Volume of a Cone 

11.1.5 Surface Area and Volume of a Sphere 

Section 11.2

11.2.1 Coordinates on a Sphere 

11.2.2 Tangents and Arcs 

11.2.3 Secant and Tangent Relationships 

Chapter Closure

Apéndice Resolución de ecuaciones

Section A.1

A.1.1 Exploring Variables and Expressions 

A.1.2 Using Zero to Simplify Algebraic Expressions 

A.1.3 Using Algebra Tiles to Compare Expressions 

A.1.4 Justifying and Recording Work 

A.1.5 Using Algebra Tiles to Solve for x 

A.1.6 More Solving Equations 

A.1.7 Checking Solutions 

A.1.8 Determining the Number of Solutions 

A.1.9 Using Equations to Solve Problems 

Appendix Closure

Material de puntos de comprobación,

Checkpoint 1: Solving Linear Equations, Part 1 (Integer Coefficients) 

Checkpoint 2: Evaluating Expressions and the Order of Operations 

Checkpoint 3: Operations with Rational Numbers 

Checkpoint 4: Laws of Exponents and Scientific Notation 

Checkpoint 5: Writing the Equation of a Line 

Checkpoint 6A: Solving Linear Equations, Part 2 (Fractional Coefficients) 

Checkpoint 6B: Multiplying Binomials and Solving Equations with Parentheses 

Checkpoint 7: Interpreting Associations 

Checkpoint 8A: Rewriting Equations with More Than One Variable 

Checkpoint 8B: Solving Problems by Writing Equations 

Checkpoint 9: Solving Linear Systems of Equations 

Checkpoint 10: Determining Congruent Triangles 

Checkpoint 11: The Exponential Web

Matemática
Integrada II

Capítulo 1 Exploración de relaciones

Click to Edit icon for add content.

Capítulo 2 Justificación y semejanzas

Click to Edit icon for add content.

Capítulo 3 Probabilidad y trigonometría

Click to Edit icon for add content.

Capítulo 4 Factorización y más trigonometría

Click to Edit icon for add content.

Capítulo 5 Funciones cuadráticas

Click to Edit icon for add content.

Capítulo 6 Más triángulos rectángulos

Section 6.1

6.1.1 Comparing Expressions 

6.1.2 Comparing Quantities with Variables 

6.1.3 One Variable Inequalities 

6.1.4 Solving One Variable Inequalities 

Section 6.2

6.2.1 Solving Equations 

6.2.2 Checking Solutions and the Distributive Property 

6.2.3 Solving Equations and Recording Work 

6.2.4 Using a Table to Write Equations from Word Problems

6.2.5 Writing and Solving Equations 

6.2.6 Cases with Infinite or No Solutions 

6.2.7 Choosing a Solving Strategy 

Chapter Closure

Capítulo 7 Demostración y probabilidad condicional

Section 7.1

7.1.1 Distance, Rate, and Time 

7.1.2 Scaling Quantities 

7.1.3 Solving Problems Involving Percents 

7.1.4 Equations with Fraction and Decimal Coefficients 

7.1.5 Creating Integer Coefficients 

7.1.6 Creating Integer Coefficients Efficiently 

7.1.7 Percent Increase and Decrease 

7.1.8 Simple Interest 

Section 7.2

7.2.1 Finding Missing Information in Proportional Relationships 

7.2.2 Solving Proportions 

Chapter Closure

Capítulo 8 Polígonos y círculos

Section 8.1

8.1.1 Measurement Precision 

8.1.2 Comparing Distributions 

Section 8.2

8.2.1 Representative Samples 

8.2.2 Inference from Random Samples 

Section 8.3

8.3.1 Introduction to Angles 

8.3.2 Classifying Angles 

8.3.3 Constructing Shapes 

8.3.4 Building Triangles 

Chapter Closure 

Capítulo 9 Modelado con funciones

Section 9.1

9.1.1 Circumference, Diameter, and Pi 

9.1.2 Area of Circles 

9.1.3 Area of Composite Shapes 

Section 9.2

9.2.1 Surface Area and Volume 

9.2.2 Cross Sections 

9.2.3 Volume of a Prism 

9.2.4 Volume of Non-Rectangular Prisms 

Chapter Closure 

Section 9.3

9.3.1 Volume and Scaling 

9.3.2 Using Multiple Math Ideas to Create an Interior Design 

9.3.3 Applying Ratios

Capítulo 10 Círculos y más

Checkpoint 1: Area and Perimeter of Polygons 

Checkpoint 2: Multiple Representations of Portions 

Checkpoint 3: Multiplying Fractions and Decimals 

Checkpoint 5: Order of Operations 

Checkpoint 6: Writing and Evaluating Algebraic Expressions 

Checkpoint 7A: Simplifying Expressions 

Checkpoint 7B: Displays of Data: Histograms and Box Plots 

Checkpoint 8: Solving Multi-Step Equations 

Checkpoint 9: Unit Rates and Proportions

Capítulo 11 Sólidos

Section 11.1

11.1.1 Transforming Functions 

11.1.2 Inverse Functions 

Section 11.2

11.2.1 Investigating Data Representations 

11.2.2 Comparing Data 

11.2.3 Standard Deviation 

Section 11.3

11.3.1 Using a Best-Fit Line to Make a Prediction 

11.3.2 Relation Treasure Hunt 

11.3.3 Investigating a Complex Function 

11.3.4 Using Algebra to Find a Maximum 

11.3.5 Exponential Functions and Linear Inequalities 

Chapter Closure

Capítulo 12 Conteo y cierre

Section A.1

A.1.1 Exploring Variables and Combining Like Terms 

A.1.2 Simplifying Expressions by Combining Like Terms 

A.1.3 Writing Algebraic Expressions 

A.1.4 Using Zero to Simplify Algebraic Expressions 

A.1.5 Using Algebra Tiles to Simplify Algebraic Expressions 

A.1.6 Using Algebra Tiles to Compare Expressions 

A.1.7 Simplifying and Recording Work 

A.1.8 Using Algebra Tiles to Solve for x 

A.1.9 More Solving Equations 

Chapter Closure

Material de puntos de comprobación

Checkpoint 1: Solving Problems with Linear and Exponential Relationships

Checkpoint 2: Calculating Areas and Perimeters of Complex Shapes 

Checkpoint 3: Angle Relationships in Geometric Figures 

Checkpoint 4: Solving Proportions and Similar Figures 

Checkpoint 5: Calculating Probabilities 

Checkpoint 7: Factoring Quadratic Expressions 

Checkpoint 8: Applying Trigonometric Ratios and the Pythagorean Theorem 

Checkpoint 9: The Quadratic Web 

Checkpoint 10: Solving Quadratic Equations 

Checkpoint 11: Angle Measures and Areas of Regular Polygons 

Checkpoint 12: Circles, Arcs, Sectors, Chords, and Tangents

Matemática
Integrada III

Capítulo 1 Investigaciones y funciones

Click to Edit icon for add content.

Capítulo 2 Transformación de gráficos madre

Click to Edit icon for add content.

Capítulo 3 Resolución de problemas y desigualdades

Click to Edit icon for add content.

Capítulo 4 Distribuciones normales y modelado geométrico

Click to Edit icon for add content.

Capítulo 5 Inversas y logaritmos

Click to Edit icon for add content.

Capítulo 6 Simulación de la variabilidad muestral

Section 6.1

6.1.1 Rigid Transformations 

6.1.2 Rigid Transformations on a Coordinate Graph 

6.1.3 Describing Transformations 

6.1.4 Using Rigid Transformations 

Section 6.2

6.2.1 Multiplication and Dilation 

6.2.2 Dilations and Similar Figures 

6.2.3 Identifying Similar Shapes 

6.2.4 Similar Figures and Transformations 

6.2.5 Working With Corresponding Sides 

6.2.6 Solving Problems Involving Similar Shapes 

Chapter Closure

Capítulo 7 Logaritmos y triángulos

Section 7.1

7.1.1 Circle Graphs 

7.1.2 Organizing Data in a Scatterplot 

7.1.3 Identifying and Describing Association 

Section 7.2

7.2.1 y = mx + b Revisited 

7.2.2 Slope 

7.2.3 Slope in Different Representations 

7.2.4 More About Slope 

7.2.5 Proportional Equations 

Section 7.3

7.3.1 Using Equations to Make Predictions 

7.3.2 Describing Association Fully 

7.3.3 Association Between Categorical Variables 

Chapter Closure

Capítulo 8 Polinomios

Section 8.1

8.1.1 Patterns of Growth in Tables and Graphs 

8.1.2 Compound Interest 

8.1.3 Linear and Exponential Growth 

Section 8.2

8.2.1 Exponents and Scientific Notation 

8.2.2 Exponent Rules 

8.2.3 Negative Exponents 

8.2.4 Operations with Scientific Notation 

Section 8.3

8.3.1 Functions in Graphs and Tables 

Chapter Closure 

Chapter 9 Funciones trigonométricas

Section 9.1

9.1.1 Parallel Line Angle Pair Relationships 

9.1.2 Finding Unknown Angles in Triangles 

9.1.3 Exterior Angles in Triangles 

9.1.4 AA Triangle Similarity 

Section 9.2

9.2.1 Side Lengths and Triangles 

9.2.2 Pythagorean Theorem 

9.2.3 Understanding Square Root 

9.2.4 Real Numbers 

9.2.5 Applications of the Pythagorean Theorem 

9.2.6 Pythagorean Theorem in Three Dimensions 

9.2.7 Pythagorean Theorem Proofs 

Chapter Closure

Capítulo 10 Series

 Section 10.1

10.1.1 Cube Roots 

10.1.2 Surface Area and Volume of a Cylinder 

10.1.3 Volumes of Cones and Pyramids 

10.1.4 Volume of a Sphere 

10.1.5 Applications of Volume 

Chapter Closure 

10.2.1 Indirect Measurement 

10.2.2 Finding Unknowns 

10.2.3 Analyzing Data to Identify a Trend

Capítulo 11 Expresiones racionales y sistemas de tres variables

1. Operations with Signed Fractions and Decimals 

2. Evaluating Expressions and Using Order of Operations 

3. Unit Rates and Proportions 

4. Area and Perimeter of Circles and Composite Figures 

5. Solving Equations 

6. Multiple Representations of Linear Equations 

7. Solving Equations with Fractions and Decimals  (Fraction Busters) 

8. Transformations 

9. Scatterplots and Association

Chapter 12 Trigonometría analítica

Section 11.1

11.1.1 Simulations of Probability 

11.1.2 More Simulations of Probability 

11.1.3 Simulating Sampling Variability

Section 11.2

11.2.1 Statistical Test Using Sampling Variability 

11.2.2 Variability in Experimental Results

11.2.3 Quality Control 

11.2.4 Statistical Process Control 

Section 11.3

11.3.1 Analyzing Decisions and Strategies 

Chapter Closure

Material de puntos de comprobación

Section 12.1

12.1.1 Analyzing Trigonometric Equations 

12.1.2 Solutions to Trigonometric Equations 

12.1.3 Inverses of Trigonometric Functions 

12.1.4 Reciprocal Trigonometric Functions 

Section 12.2

12.2.1 Trigonometric Identities

12.2.2 Proving Trigonometric Identities 

12.2.3 Angle Sum and Difference Identities

Chapter Closure

Precalculus
Third Edition

Chapter 1: Preparing for Your Journey

Opening1.OPChapter Opening
Section 1.11.1.1Visualizing Information
1.1.2Perimeter and Area Relationships
1.1.3Describing and Extending Patterns
1.1.4Representing Data
1.1.5Making Sense of a Logic Problem
Section 1.21.2.1Multiple Representations
1.2.2Representing Comparisons
1.2.3Characteristics of Numbers
1.2.4Products, Factors, and Factor Pairs
Section 1.31.3.1Attributes and Characteristics of Shapes
1.3.2More Characteristics of Shapes
Closure1.CLChapter Closure

Chapter 2: Functions and Trigonometry

Opening2.OPChapter Opening
Section 2.12.1.1Dot Plots and Bar Graphs
2.1.2Histograms and Stem-and-Leaf Plots
Section 2.22.2.1Exploring Area
2.2.2Square Units and Area of Rectangles
2.2.3Area and Perimeter
Section 2.32.3.1Using Rectangles to Multiply
2.3.2Using Generic Rectangles
2.3.3Distributive Property
2.3.4Generic Rectangles and the Greatest Common Factor
Closure2.CLChapter Closure

Chapter 3: Algebra and Area Under a Curve

Opening3.OPChapter Opening
Section 3.13.1.1Using the Multiplicative Identity
3.1.2Portions as Percents
3.1.3Connecting Percents with Decimals and Fractions
3.1.4Multiple Representations of a Portion
3.1.5Completing the Web
3.1.6Investigating Ratios
Section 3.23.2.1Addition, Subtraction, and Opposites
3.2.2Locating Negative Numbers
3.2.3Absolute Value
3.2.4Length on a Coordinate Graph
Closure3.CLChapter Closure

Chapter 4:Polynomial and Rational Functions

Opening4.OPChapter Opening
Section 4.14.1.1Introduction to Variables
4.1.2Writing Equivalent Expressions
4.1.3Using Variables to Generalize
Section 4.24.2.1Enlarging Two-Dimensional Shapes
4.2.2Enlarging and Reducing Figures
4.2.3Enlargement and Reduction Ratios
4.2.4Ratios in Other Situations
Closure4.CLChapter Closure

Chapter 5: Exponentials and Logarithms

Opening5.OPChapter Opening
Section 5.15.1.1Representing Fraction Multiplication
5.1.2Describing Parts of Parts
5.1.3Calculating Parts of Parts
5.1.4Multiplying Mixed Numbers
Section 5.25.2.1Making Sense of Decimal Multiplication
5.2.2Fraction Multiplication Number Sense
Section 5.35.3.1Rearranging Areas
5.3.2Area of a Parallelogram
5.3.3Area of a Triangle
5.3.4Area of a Trapezoid
Closure5.CLChapter Closure
Section 5.4 Mid-Course Reflection Activities

Chapter 6: Triangles and Vectors

Opening6.OPChapter Opening
Section 6.16.1.1Dividing
6.1.2Fractions as Division Problems
6.1.3Problem Solving with Division
6.1.4Solving Problems Involving Fraction Division
Section 6.26.2.1Order of Operations
6.2.2Area of a Rectangular Shape
6.2.3Naming Perimeters of Algebra Tiles
6.2.4Combining Like Terms
6.2.5Evaluating Algebraic Expressions
Closure6.CLChapter Closure

Chapter 7: Limits and Rates

Opening7.OPChapter Opening
Section 7.17.1.1Comparing Rates
7.1.2Comparing Rates with Tables and Graphs
7.1.3Unit Rates
Section 7.27.2.1Analyzing Strategies for Dividing Fractions
7.2.2Another Strategy for Division
7.2.3Division with Fractions and Decimals
7.2.4Fraction Division as Ratios
Section 7.37.3.1Inverse Operations
7.3.2Distributive Property
7.3.3Distributive Property and Expressions Vocabulary
7.3.4Writing Algebraic Equations and Inequalities
Closure7.CLChapter Closure

Chapter 8: Extending Periodic Functions

Opening8.OPChapter Opening
Section 8.18.1.1Measures of Central Tendency
8.1.2Choosing Mean or Median
8.1.3Shape and Spread
8.1.4Box Plots and Interquartile Range
8.1.5Comparing and Choosing Representations
Section 8.28.2.1Statistical Questions
Section 8.38.3.1Writing Multiplication Equations
8.3.2Distance, Rate, and Time
8.3.3Unit Conversion
Closure8.CLChapter Closure

Chapter 9: Matrices

Opening9.OPChapter Opening
Section 9.19.1.1Volume of a Rectangular Prism
9.1.2Nets and Surface Area
Section 9.29.2.1Multiplicative Growth and Percents
9.2.2Composition and Decomposition of Percents
9.2.3Percent Discounts
9.2.4Simple Interest and Tips
Closure9.CLChapter Closure
Section 9.39.3.1A Culminating Portions Challenge
9.3.2Representing and Predicting Patterns
9.3.3Analyzing Data to Identify a Trend

Chapter 10: Conics and Parametric Functions

CP 1: Using Place Value to Round and Compare Decimals

CP 2: Addition and Subtraction of Decimals

CP 3: Addition and Subtraction of Fractions

CP 4: Addition and Subtraction of Mixed Numbers

CP 5: Multiple Representations of Portions

P 6: Locating Points on a Number Line and on a Coordinate Graph

CP 7A: Multiplication of Fractions and Decimals

CP 7B: Area and Perimeter of Quadrilaterals and Triangles

CP 8A: Rewriting and Evaluating Variable Expressions

CP 8B: Division of Fractions and Decimals

CP 9A: Displays of Data: Histograms and Box Plots

CP 9B: Solving One-Step Equations

 

Chapter 11: Polar Functions and Complex Numbers

Section 11.1

11.1.1 Plotting Polar Coordinates 

11.1.2 Graphs of Polar Functions 

11.1.3 Families of Polar Functions 

11.1.4 Converting Between Polar and Rectangular Forms 

Section 11.2

11.2.1 Using the Complex Plane 

11.2.2 Operations with Complex Numbers Geometrically 

11.2.3 Polar Form of Complex Numbers 

11.2.4 Operations with Complex Numbers in Polar Form 

11.2.5 Powers and Roots of Complex Numbers 

Closure

Chapter 12: Series and Statistics

Section 12.1

12.1.1 Arithmetic Series 

12.1.2 Geometric Series 

12.1.3 Infinite Geometric Series 12.1.4 Applications of Geometric Series 

12.1.5 The Sum of the Harmonic Series 

Section 12.2

12.2.1 The Binomial Theorem 

12.2.2 Binomial Probabilities 

Section 12.3

12.3.1 Expected Value of a Discrete Random Variable 

12.3.2 Expected Value and Decision Making 

Closure

Chapter 13: Precalculus Finale

Section 13.1

13.1.1 A Race to Infinity 

13.1.2 Limits to Infinity 

13.1.3 Evaluating Limits at a Point Algebraically 

13.1.4 Another Look at e 

Section 13.2

13.2.1 Trapping Area With Trapezoids 

13.2.2 Area as a Function 

13.2.2A Going all to Pieces: Writing an Area Program 

13.2.3 Rocket Launch 

Section 13.3

13.3.1 Velocity and Position Graphs 

13.3.2 Instantaneous Velocity 

13.3.3 Slope Functions 

13.3.4 The Definition of Derivative 

13.3.5 Slope and Area Under a Curve 

Closure

Precalculus
Supplement

2.3.4

Defining Concavity

4.4.1

Characteristics of Polynomial Functions

5.2.6

Semi-Log Plots

5 Closure

Closure How Can I Apply It? Activity 3

9.3.1

Transition States

9.3.2

Future and Past States

10.3.1

The Parametrization of Functions, Conics, and Their Inverses

10.3.2

Vector-Valued Functions

11.1.5

Rate of Change of Polar Functions

Calculus
Third Edition

Chapter 1:A Beginning Look at Calculus

Click to Edit icon for add content.

Chapter 2: Rates, Sums, Limits, and Continuity

Click to Edit icon for add content.

Chapter 3: Slope and Curve Analysis

Click to Edit icon for add content.

Chapter 4: The Fundamental Theorem of Calculus

Click to Edit icon for add content.

Chapter 5: Derivative Tools and Applications

Click to Edit icon for add content.

Chapter 6: More Tools and Theorems

Section 6.1

6.1.1 Comparing Expressions 

6.1.2 Comparing Quantities with Variables 

6.1.3 One Variable Inequalities 

6.1.4 Solving One Variable Inequalities 

Section 6.2

6.2.1 Solving Equations 

6.2.2 Checking Solutions and the Distributive Property 

6.2.3 Solving Equations and Recording Work 

6.2.4 Using a Table to Write Equations from Word Problems

6.2.5 Writing and Solving Equations 

6.2.6 Cases with Infinite or No Solutions 

6.2.7 Choosing a Solving Strategy 

Chapter Closure

Chapter 7: Related Rates and Integration Tools

Section 7.1

7.1.1 Distance, Rate, and Time 

7.1.2 Scaling Quantities 

7.1.3 Solving Problems Involving Percents 

7.1.4 Equations with Fraction and Decimal Coefficients 

7.1.5 Creating Integer Coefficients 

7.1.6 Creating Integer Coefficients Efficiently 

7.1.7 Percent Increase and Decrease 

7.1.8 Simple Interest 

Section 7.2

7.2.1 Finding Missing Information in Proportional Relationships 

7.2.2 Solving Proportions 

Chapter Closure

Chapter 8: Volume

Section 8.1

8.1.1 Measurement Precision 

8.1.2 Comparing Distributions 

Section 8.2

8.2.1 Representative Samples 

8.2.2 Inference from Random Samples 

Section 8.3

8.3.1 Introduction to Angles 

8.3.2 Classifying Angles 

8.3.3 Constructing Shapes 

8.3.4 Building Triangles 

Chapter Closure 

Chapter 9: Pre-Calculus Review

Section 9.1

9.1.1 Circumference, Diameter, and Pi 

9.1.2 Area of Circles 

9.1.3 Area of Composite Shapes 

Section 9.2

9.2.1 Surface Area and Volume 

9.2.2 Cross Sections 

9.2.3 Volume of a Prism 

9.2.4 Volume of Non-Rectangular Prisms 

Chapter Closure 

Section 9.3

9.3.1 Volume and Scaling 

9.3.2 Using Multiple Math Ideas to Create an Interior Design 

9.3.3 Applying Ratios

Chapter 10: Convergence of Series

Checkpoint 1: Area and Perimeter of Polygons 

Checkpoint 2: Multiple Representations of Portions 

Checkpoint 3: Multiplying Fractions and Decimals 

Checkpoint 5: Order of Operations 

Checkpoint 6: Writing and Evaluating Algebraic Expressions 

Checkpoint 7A: Simplifying Expressions 

Checkpoint 7B: Displays of Data: Histograms and Box Plots 

Checkpoint 8: Solving Multi-Step Equations 

Checkpoint 9: Unit Rates and Proportions

Chapter 11: Polar and Parametric Functions

Section 11.1

11.1.1 Area Bounded by a Polar Curve 

11.1.2 More Polar Area 

11.1.3 Area Between Polar Curves 

Section 11.2

11.2.1 Applied Calculus in Component Form 

11.2.2 Second Derivatives in Component Form 

11.2.3 Total Distance and Arc Length 

Section 11.3

11.3.1 Slopes of Polar Curves 

11.3.2 More Slopes of Polar Curves 

Section 11.4

11.4.1 Battling Robots

Chapter 12: Approximating Functions and Error

Section 12.1

12.1.1 Approximating with Polynomial Functions 

12.1.2 Taylor Polynomials About x = 0 

12.1.3 Taylor Polynomials About x = c 

12.1.4 Taylor Series 

12.1.5 Building Taylor Series Using Substitution 

Section 12.2

12.2.1 Interval of Convergence Using Technology 

12.2.2 Interval of Convergence Analytically 

Section 12.3

12.3.1 Error Bound for Alternating Taylor Polynomials 

12.3.2 Lagrange Error Bound 

Section 12.4

12.4.1 Evaluating Indeterminate Forms Using Taylor Series

Statistics

Chapter 1: Representing Data

Click to Edit icon for add content.

Chapter 2: Two-Variable Quantitative Data

Click to Edit icon for add content.

Chapter 3: Multivariable Categorical Data

Click to Edit icon for add content.

Chapter 4:Studies and Experiments

Click to Edit icon for add content.

Chapter 5: Density Functions and Normal Distributions

Click to Edit icon for add content.

Chapter 6: Discrete Probability Distributions

Section 6.1

6.1.1 Rigid Transformations 

6.1.2 Rigid Transformations on a Coordinate Graph 

6.1.3 Describing Transformations 

6.1.4 Using Rigid Transformations 

Section 6.2

6.2.1 Multiplication and Dilation 

6.2.2 Dilations and Similar Figures 

6.2.3 Identifying Similar Shapes 

6.2.4 Similar Figures and Transformations 

6.2.5 Working With Corresponding Sides 

6.2.6 Solving Problems Involving Similar Shapes 

Chapter Closure

Chapter 7: Variability in Categorical Data Sampling

Section 7.1

7.1.1 Circle Graphs 

7.1.2 Organizing Data in a Scatterplot 

7.1.3 Identifying and Describing Association 

Section 7.2

7.2.1 y = mx + b Revisited 

7.2.2 Slope 

7.2.3 Slope in Different Representations 

7.2.4 More About Slope 

7.2.5 Proportional Equations 

Section 7.3

7.3.1 Using Equations to Make Predictions 

7.3.2 Describing Association Fully 

7.3.3 Association Between Categorical Variables 

Chapter Closure

Chapter 8: Drawing Conclusions From Categorical Data

Section 8.1

8.1.1 Patterns of Growth in Tables and Graphs 

8.1.2 Compound Interest 

8.1.3 Linear and Exponential Growth 

Section 8.2

8.2.1 Exponents and Scientific Notation 

8.2.2 Exponent Rules 

8.2.3 Negative Exponents 

8.2.4 Operations with Scientific Notation 

Section 8.3

8.3.1 Functions in Graphs and Tables 

Chapter Closure 

Chapter 9: Chi-Squared Inference Procedures

Section 9.1

9.1.1 Parallel Line Angle Pair Relationships 

9.1.2 Finding Unknown Angles in Triangles 

9.1.3 Exterior Angles in Triangles 

9.1.4 AA Triangle Similarity 

Section 9.2

9.2.1 Side Lengths and Triangles 

9.2.2 Pythagorean Theorem 

9.2.3 Understanding Square Root 

9.2.4 Real Numbers 

9.2.5 Applications of the Pythagorean Theorem 

9.2.6 Pythagorean Theorem in Three Dimensions 

9.2.7 Pythagorean Theorem Proofs 

Chapter Closure

Chapter 10: Drawing Conclusions From Quantitative Data

 Section 10.1

10.1.1 Cube Roots 

10.1.2 Surface Area and Volume of a Cylinder 

10.1.3 Volumes of Cones and Pyramids 

10.1.4 Volume of a Sphere 

10.1.5 Applications of Volume 

Chapter Closure 

10.2.1 Indirect Measurement 

10.2.2 Finding Unknowns 

10.2.3 Analyzing Data to Identify a Trend

Chapter 11:Comparing Means and Identifying Tests

1. Operations with Signed Fractions and Decimals 

2. Evaluating Expressions and Using Order of Operations 

3. Unit Rates and Proportions 

4. Area and Perimeter of Circles and Composite Figures 

5. Solving Equations 

6. Multiple Representations of Linear Equations 

7. Solving Equations with Fractions and Decimals  (Fraction Busters) 

8. Transformations 

9. Scatterplots and Association

Chapter 12: Inference for Regression

Section 12.1

12.1.1 Sampling Distribution of the Slope of the Regression Line 

12.1.2 Inference for the Slope of the Regression Line 

Section 12.2

12.2.1 Transforming Data to Achieve Linearity 

12.2.2 Using Logarithms to Achieve Linearity

Chapter 13: ANOVA and Beyond!

Section 13.1

13.1.1 Modeling With the Chi-Squared Distribution 

13.1.2 Introducing the F-Distribution 

Section 13.2

13.2.1 One-Way ANOVA 

Section 13.3

13.3.1 Sign Test: Introduction to Nonparametric Inference 

13.3.2 Mood’s Median Test

JAVA

Chapter 1: Object Anatomy

Click to Edit icon for add content.

Chapter 2:Using Objects

Click to Edit icon for add content.

Chapter 3: Classes from Libraries

Click to Edit icon for add content.

Chapter 4: Iteration and Decisions

Click to Edit icon for add content.

Chapter 5: Arrays

Click to Edit icon for add content.

Chapter 6: Two-Dimensional Arrays

Section 6.1

6.1.1 Comparing Expressions 

6.1.2 Comparing Quantities with Variables 

6.1.3 One Variable Inequalities 

6.1.4 Solving One Variable Inequalities 

Section 6.2

6.2.1 Solving Equations 

6.2.2 Checking Solutions and the Distributive Property 

6.2.3 Solving Equations and Recording Work 

6.2.4 Using a Table to Write Equations from Word Problems

6.2.5 Writing and Solving Equations 

6.2.6 Cases with Infinite or No Solutions 

6.2.7 Choosing a Solving Strategy 

Chapter Closure

Chapter 7: The ArrayList and Sorting

Section 7.1

7.1.1 Distance, Rate, and Time 

7.1.2 Scaling Quantities 

7.1.3 Solving Problems Involving Percents 

7.1.4 Equations with Fraction and Decimal Coefficients 

7.1.5 Creating Integer Coefficients 

7.1.6 Creating Integer Coefficients Efficiently 

7.1.7 Percent Increase and Decrease 

7.1.8 Simple Interest 

Section 7.2

7.2.1 Finding Missing Information in Proportional Relationships 

7.2.2 Solving Proportions 

Chapter Closure

Chapter 8: Inheritance and Polymorphism

Section 8.1

8.1.1 Measurement Precision 

8.1.2 Comparing Distributions 

Section 8.2

8.2.1 Representative Samples 

8.2.2 Inference from Random Samples 

Section 8.3

8.3.1 Introduction to Angles 

8.3.2 Classifying Angles 

8.3.3 Constructing Shapes 

8.3.4 Building Triangles 

Chapter Closure 

Chapter 9: Recursion

Section 9.1

9.1.1 Circumference, Diameter, and Pi 

9.1.2 Area of Circles 

9.1.3 Area of Composite Shapes 

Section 9.2

9.2.1 Surface Area and Volume 

9.2.2 Cross Sections 

9.2.3 Volume of a Prism 

9.2.4 Volume of Non-Rectangular Prisms 

Chapter Closure 

Section 9.3

9.3.1 Volume and Scaling 

9.3.2 Using Multiple Math Ideas to Create an Interior Design 

9.3.3 Applying Ratios

Chapter 10: Additional Projects and Review

Checkpoint 1: Area and Perimeter of Polygons 

Checkpoint 2: Multiple Representations of Portions 

Checkpoint 3: Multiplying Fractions and Decimals 

Checkpoint 5: Order of Operations 

Checkpoint 6: Writing and Evaluating Algebraic Expressions 

Checkpoint 7A: Simplifying Expressions 

Checkpoint 7B: Displays of Data: Histograms and Box Plots 

Checkpoint 8: Solving Multi-Step Equations 

Checkpoint 9: Unit Rates and Proportions

Learning Log Sample

LEARNING LOG

Write a Learning Log entry to summarize what you learned today about the Giant One and its uses.  Include examples of how the Giant One is used.  Title this entry “The Giant One and Equivalent Fractions” and label it with today’s date. 

Learning Log

Learning Log Sample

LEARNING LOG

Make a rectangle from any number of tiles.  Your rectangle must contain at least one of each of the following tiles: x^2, y^2 , x, y and xy.  Sketch your rectangle in your Learning Log and write its area as a product and as a sum.  Explain how you know that the product and sum are equivalent.  Title this entry “Area as a Product and as a Sum” and label it with today’s date.

 
 
Learning Log

Homework Help Sample

An example of Homework Help

Sample Checkpoint

Checkpoint 6A
Problem 6-29

Rewriting Equations With More Than One Variable

Core Connections 1

Chapter 1: Introduction and Representation

Section 1.1
1.1.1 Visualizing Information
1.1.2 Perimeter and Area Relationships
1.1.3 Describing and Extending Patterns
1.1.4 Representing Data
1.1.5 Making Sense of a Logic Problem
Section 1.2
1.2.1 Multiple Representations
1.2.2 Representing Comparisons
1.2.3 Characteristics of Numbers
1.2.4 Products, Factors, and Factor Pairs
Chapter 1 Closure

Chapter 2: Arithmetic Strategies and Area

Section 2.1
2.1.1 Dot Plots and Bar Graphs
2.1.2 Histograms and Stem – and – Leaf Plots
Section 2.2
2.2.1 Exploring Area
2.2.2 Square Units and Area of Rectangles
2.2.3 Area and Perimeter
Section 2.3
2.3.1 Using Rectangles to Multiply
2.3.2 Using Generic Rectangles
2.3.3 Generic Rectangles and Greatest Common Factor
2.3.4 Distributive Property
Chapter 2 Closure

Chapter 3: Portions and Integers

Section 3.1
3.1.1 Using the Multiplicative Identity
3.1.2 Portions as Percents
3.1.3 Connecting Percents with Decimals and Fractions
3.1.4 Multiple Representations of a Portion
3.1.5 Completing the Web
3.1.6 Investigating Ratios
Section 3.2 3.2.1 Addition , Subtraction, and Opposites
3.2.2 Locating Negative Numbers
3.2.3 Absolute Value
3.2.4 Length on a Coordinate Graph
Chapter 3 Closure

Chapter 4: Variables and Ratios

Section 4.1
4.1.1 Introduction to Variables
4.1.2 Writing Equivalent Expressions
4.1.3 Using Variables to Generalize
Section 4.2
4.2.1 Enlarging Two – Dimensional Shapes
4.2.2 Enlarging and Reducing Figures
4.2.3 Enlargement and Reduction Ratios
4.2.4 Ratios in Other Situations
Chapter 4 Closur

Chapter 5: Multiplying Fractions and Area

Section 5.1
5.1.1 Representing Fraction Multiplication
5.1.2 Describing Parts of Parts
5.1.3 Calculating Parts of Parts
5.1.4 Multiplying Mixed Numbers
Section 5.2
5.2.1 Making Sense of Decimal Multiplication
5.2.2 Fraction Multiplication Number Sense
Section 5.3
5.3.1 Rearranging Areas
5.3.2 Area of a Parallelogram
5.3.3 Area of a Triangle
5.3.4 Area of a Trapezoid
Chapter 5 Closure
Section 5.4 Mid – Course Reflection Activiti

Chapter 6: Dividing and Building Expressions

Section 6.1
6.1.1 Dividing
6.1.2 Fractions as Division Problems
6.1.3 Problem Solving with Division
6.1.4 Solving Problems Involving Fraction Division
Section 6.2
6.2.1 Order of Operations
6.2.2 Area of a Rectangular Shape
6.2.3 Naming Perimeters of Algebra Tiles
6.2.4 Combining Like Terms
6.2.5 Evaluating Algebraic Expressions
Chapter 6 Closure

Chapter 7: Rates and Operations

Section 7.1
7.1.1 Comparing Rates
7.1.2 Comparing Rates with Tables and Graphs
7.1.3 Unit Rates
Section 7.2
7.2.1 Anal yzing Strategies for Dividing Fractions
7.2.2 Another Strategy for Division
7.2.3 Division with Fractions and Decimals
7.2.4 Fraction Division as Ratios
Section 7.3
7.3.1 Inverse Operations
7.3.2 Distributive Property
7.3.3 Distributive Property and Expressions Vocabulary
7.3.4 Writing Algebraic Equations and Inequalities
Chapter 7 Closure

Chapter 8: Statistics and Multiplication Equations

Section 8.1
8.1.1 Measures of Central Tendency
8.1.2 Choosing Mean or Median
8.1.3 Shape and Spread
8.1.4 Box Plots and Interquartile Range
8.1.5 Comparing and Choosing Representations
Section 8.2
8.2.1 Statistical Questions
Section 8.3
8.3.1 Writing Multiplication Equations
8.3.2 Distance, Rate, and Time
8.3.3 Unit Conversion
Chapter 8 Closure

Chapter 9: Volume and Percents

Section 9.1
9.1.1 Volume of a Rectangular Prism
9.1.2 Nets and Surface Area
Section 9.2 9.2.1 Multiplicative Growth and Percents
9.2.2 Composition and Decomposition of Percents
9.2.3 Percent Discounts
9.2.4 Simple Interest and Tips
Chapter 9 Closure
Section 9.3
9.3.1 A Culminating Portions Challenge
9.3.2 Representing and Predicting Patterns
9.3.3 Analyzing Data to Identify a Trend

Checkpoint Materials

CP 1: Using Place Value to Round and Compare Decimals

CP 2: Addition and Subtraction of Decimals

CP 3: Addition and Subtraction of Fractions

CP 4: Addition and Subtraction of Mixed Numbers

CP 5: Multiple Representations of Portions

P 6: Locating Points on a Number Line and on a Coordinate Graph

CP 7A: Multiplication of Fractions and Decimals

CP 7B: Area and Perimeter of Quadrilaterals and Triangles

CP 8A: Rewriting and Evaluating Variable Expressions

CP 8B: Division of Fractions and Decimals

CP 9A: Displays of Data: Histograms and Box Plots

CP 9B: Solving One-Step Equations

 

Core Connections 2

Chapter 1: Introduction and Probability

Section 1.1
1.1.1 Finding Shared and Unique Characteristics
1.1.2 Analyzing a Game
1.1.3 Finding Unknowns
1.1.4 Investigating a Proportional Relationship
1.1.5 Investigating Number Patterns
Section 1.2
1.2. 1 Introduction to Probability
1.2.2 Investigating Probability
1.2.3 Modifying the Sample Space
1.2.4 Ex pressing Fractions as Percents
1.2.5 Rewriting Fractions
1.2.6 Fraction Addition
1.2.7 Compound Probability
1.2.8 Subtracting Probabilities
Chapter Closure

Chapter 2: Fractions and Integer Addition

Section 2.1
2.1.1 Fraction – to – Decimal Conversions
2.1.2 Rewriting Decimals as Fractions
Section 2.2
2.2.1 Composing Integers
2.2.2 Adding Integers and Rational Numbers
2.2.3 More Addition of Integers and Rational Numbers
2.2.4 Multipl ication as Repeated Addition
2.2.5 Multiplication of Portions
2.2 .6 Multiplying Mixed Numbers
Section 2.3 2.3.1 Choosing a Scale and Graphing Data
2.3.2 More Graph Scaling
Chapter Closure

Chapter 3:Arithmetic Properties

Section 3.1
3.1.1 Grouping Expressions
3.1.2 Identify ing Terms in Expressions
Section 3.2
3.2.1 Subtraction of Integers
3.2.2 Connecting Addition and Subtraction
3.2.3 Multiplication as Repeated Subtraction
3.2.4 Multiplication of Decimals
3.2.5 Addition, Subtraction, Multiplication, and Division of Integers
Section 3.3
3.3.1 Division with Rational Numbers
3.3.2 Division with Decimals
3.3.3 Arithmetic Properties
Chapter Closure

Chapter 4: Proportions and Expressions

Section 4.1
4.1.1 Similar Figures
4.1.2 Scale Drawings
Section 4.2 4.2.1 Recognizing Proportional Relationships
4.2.2 Proportional Relationships with Tables and Graphs
4.2.3 Unit Rate and Proportional Equations
4.2.4 Connecting Representations of Proportional Relationships
Section 4.3
4.3.1 Combining Like Terms
4.3.2 Distributive Property
4.3.3 Simplifying with Zero
Chapter Closure

Chapter 5: Probability and Solving Word Problems

Section 5.1
5.1.1 Part – Whole Relationships
5.1.2 Finding and Using Percentages
Section 5.2
5.2.1 Probability Games
5.2.2 Computer Simulations of Probability
5.2.3 Compound Independent Events
5.2.4 Probability Tables
5.2.5 Probability Trees
5.2.6 Compound Events
Section 5.3
5.3.1 Describing Relationships Between Quantities
5.3.2 Solving a Word Problem
5.3.3 Strategies for Using the 5 – D Process
5.3.4 Using Variables to Represent Quantities in Word Problems
5.3.5 More Word Problem Solving
Chapter Closure
Section 5.4
5.4 Mid – Course Reflection Activities

Chapter 6: Solving Inequalities and Equations

Section 6.1

6.1.1 Comparing Expressions 

6.1.2 Comparing Quantities with Variables 

6.1.3 One Variable Inequalities 

6.1.4 Solving One Variable Inequalities 

Section 6.2

6.2.1 Solving Equations 

6.2.2 Checking Solutions and the Distributive Property 

6.2.3 Solving Equations and Recording Work 

6.2.4 Using a Table to Write Equations from Word Problems

6.2.5 Writing and Solving Equations 

6.2.6 Cases with Infinite or No Solutions 

6.2.7 Choosing a Solving Strategy 

Chapter Closure

Chapter 7: Proportions and Percents

Section 7.1

7.1.1 Distance, Rate, and Time 

7.1.2 Scaling Quantities 

7.1.3 Solving Problems Involving Percents 

7.1.4 Equations with Fraction and Decimal Coefficients 

7.1.5 Creating Integer Coefficients 

7.1.6 Creating Integer Coefficients Efficiently 

7.1.7 Percent Increase and Decrease 

7.1.8 Simple Interest 

Section 7.2

7.2.1 Finding Missing Information in Proportional Relationships 

7.2.2 Solving Proportions 

Chapter Closure

Chapter 8: Statistics and Angle Relationships

Section 8.1

8.1.1 Measurement Precision 

8.1.2 Comparing Distributions 

Section 8.2

8.2.1 Representative Samples 

8.2.2 Inference from Random Samples 

Section 8.3

8.3.1 Introduction to Angles 

8.3.2 Classifying Angles 

8.3.3 Constructing Shapes 

8.3.4 Building Triangles 

Chapter Closure 

Chapter 9: Circles and Volume

Section 9.1

9.1.1 Circumference, Diameter, and Pi 

9.1.2 Area of Circles 

9.1.3 Area of Composite Shapes 

Section 9.2

9.2.1 Surface Area and Volume 

9.2.2 Cross Sections 

9.2.3 Volume of a Prism 

9.2.4 Volume of Non-Rectangular Prisms 

Chapter Closure 

Section 9.3

9.3.1 Volume and Scaling 

9.3.2 Using Multiple Math Ideas to Create an Interior Design 

9.3.3 Applying Ratios

Checkpoint Materials

Checkpoint 1: Area and Perimeter of Polygons 

Checkpoint 2: Multiple Representations of Portions 

Checkpoint 3: Multiplying Fractions and Decimals 

Checkpoint 5: Order of Operations 

Checkpoint 6: Writing and Evaluating Algebraic Expressions 

Checkpoint 7A: Simplifying Expressions 

Checkpoint 7B: Displays of Data: Histograms and Box Plots 

Checkpoint 8: Solving Multi-Step Equations 

Checkpoint 9: Unit Rates and Proportions

Core Connections 3

Chapter 1: Problem Solving

Section 1.1
1.1.1 Interpreting Graphs
1.1.2 Finding and Generalizing Patterns
1.1.3 The Algebra Walk
1.1.4 Collecting, Organizing, and Analyzing Data
Section 1.2
1.2.1 Proportional Relationships with Graphs and Tables
1.2.2 Strategies for Solvi ng Proportional Relationships
Chapter Closure

Chapter 2: Simplifying with Variables

Section 2.1
2.1.1 Exploring Variables and Expressions
2.1.2 Simplifying Express ions by Combining Like Terms
2.1.3 Writing Algebraic Expressions
2.1.4 Using Zero to Simplify Algebraic Expressions
2.1.5 Using Algebra Tiles to Si mplify Algebraic Expressions
2.1.6 Using Algebra Tiles to Compare Expressions
2.1.7 Simplifying and Recording Work
2.1.8 Using Algebra Tiles to Solve for x
2.1.9 More Solving Equations
Chapter Closure

Chapter 3: Graphs and Equations

Section 3.1
3.1.1 Extendin g Patterns and Finding Rules
3.1.2 Using Tables, Graphs, a nd Rules to Make Predictions
3.1.3 Using a Graphing Calculator and Identifying Solutions
3.1.4 Completing Tables and Drawing Graphs
3.1.5 Graphs, Tables, and Rules
3.1.6 Complete Graphs
3.1.7 Identifying Common Graphing Errors
Section 3.2
3.2.1 Solving Equations and Checking Solutions
3.2.2 Determining the Number of Solutions
3.2.3 Solving Equations to Solve Problems
3.2.4 More Solving Equations to Solve Problems
3.2.5 Distributive Property Equations
Chapter Closure

Chapter 4: Multiple Representations

Section 4.1
4.1.1 Finding Connect ions Between Representations
4.1.2 Seeing Growth in Different Representations
4.1.3 Connecting Linear Rules and Graphs
4.1.4 y = mx + b
4.1.5 Checking the Connections
4.1.6 Graphing a Line Without an x → y Table
4.1.7 Completing the Web
Chapter Closur

Chapter 5: Systems of Equations

Section 5.1
5.1.1 Working w ith Multi – V ariable Equations
5.1.2 Solving Equations with Fractions
Section 5.2
5.2.1 Introduction to Systems of Equations
5.2.2 Writing Rules from Word Problems 199 5.2.3 Solving Systems Algebraically
5.2.4 Strategies for Solving Systems
Chapter Closure
5.3 Mid – Course Reflection Activities

Chapter 6: Transformations and Similarity

Section 6.1

6.1.1 Rigid Transformations 

6.1.2 Rigid Transformations on a Coordinate Graph 

6.1.3 Describing Transformations 

6.1.4 Using Rigid Transformations 

Section 6.2

6.2.1 Multiplication and Dilation 

6.2.2 Dilations and Similar Figures 

6.2.3 Identifying Similar Shapes 

6.2.4 Similar Figures and Transformations 

6.2.5 Working With Corresponding Sides 

6.2.6 Solving Problems Involving Similar Shapes 

Chapter Closure

Chapter 7: Slope and Association

Section 7.1

7.1.1 Circle Graphs 

7.1.2 Organizing Data in a Scatterplot 

7.1.3 Identifying and Describing Association 

Section 7.2

7.2.1 y = mx + b Revisited 

7.2.2 Slope 

7.2.3 Slope in Different Representations 

7.2.4 More About Slope 

7.2.5 Proportional Equations 

Section 7.3

7.3.1 Using Equations to Make Predictions 

7.3.2 Describing Association Fully 

7.3.3 Association Between Categorical Variables 

Chapter Closure

Chapter 8: Exponents and Functions

Section 8.1

8.1.1 Patterns of Growth in Tables and Graphs 

8.1.2 Compound Interest 

8.1.3 Linear and Exponential Growth 

Section 8.2

8.2.1 Exponents and Scientific Notation 

8.2.2 Exponent Rules 

8.2.3 Negative Exponents 

8.2.4 Operations with Scientific Notation 

Section 8.3

8.3.1 Functions in Graphs and Tables 

Chapter Closure 

Chapter 9: Angles and the Pythagorean Theorem

Section 9.1

9.1.1 Parallel Line Angle Pair Relationships 

9.1.2 Finding Unknown Angles in Triangles 

9.1.3 Exterior Angles in Triangles 

9.1.4 AA Triangle Similarity 

Section 9.2

9.2.1 Side Lengths and Triangles 

9.2.2 Pythagorean Theorem 

9.2.3 Understanding Square Root 

9.2.4 Real Numbers 

9.2.5 Applications of the Pythagorean Theorem 

9.2.6 Pythagorean Theorem in Three Dimensions 

9.2.7 Pythagorean Theorem Proofs 

Chapter Closure

Chapter 10: Surface Area and Volume

 Section 10.1

10.1.1 Cube Roots 

10.1.2 Surface Area and Volume of a Cylinder 

10.1.3 Volumes of Cones and Pyramids 

10.1.4 Volume of a Sphere 

10.1.5 Applications of Volume 

Chapter Closure 

10.2.1 Indirect Measurement 

10.2.2 Finding Unknowns 

10.2.3 Analyzing Data to Identify a Trend

Checkpoint Materials

1. Operations with Signed Fractions and Decimals 

2. Evaluating Expressions and Using Order of Operations 

3. Unit Rates and Proportions 

4. Area and Perimeter of Circles and Composite Figures 

5. Solving Equations 

6. Multiple Representations of Linear Equations 

7. Solving Equations with Fractions and Decimals  (Fraction Busters) 

8. Transformations 

9. Scatterplots and Association

Core Connections en español,
Curso 1

Capítulo 1 Introducción y r epresenta c i ó n

Sección 1.1
1.1.1 Visualización de la información
1.1.2 Relaciones entre el perímetro y el área
1.1.3 Descripción y extensión de patrones
1.1.4 Representación de datos
1.1.5 Cómo hallarle sentido a un problema de lógica
Sección 1.2
1.2.1 Múltiples representaciones
1.2.2 Representación de comparaciones
1.2.3 Características de los números
1.2.4 Productos, factores, y pares de factores
Resumen del Capítulo

Capítulo 2 Estrategias aritméticas y área

Sección 2.1
2.1.1 Diagramas de puntos y gráficos de barras
2.1.2 Histogramas y diagramas de tallo y hojas
Sección 2.2
2.2.1 Cómo estudiar el área
2.2.2 Unidades cuadradas y área de los rectángulos
2.2.3 Área y perímetro
Sección 2.3
2.3.1 Uso de rectángulos para multiplicar
2.3.2 Uso de rectángulos genéricos
2.3.3 Rectángulos genéricos y máximo factor común
2.3.4 Pro piedad distributiva
Resumen del Capítuo

Capítulo 3 Porciones y números enteros

Sección 3.1
3.1.1 Uso de la identidad multiplicativa
3.1.2 Porciones como porcentajes
3.1.3 Conexión entre porcentajes, decimales y fracciones
3.1.4 Múltiples representaciones de una porción
3.1.5 Cómo completar la red
3.1.6 Investigación de razones
Sección 3.2
3.2.1 Suma, resta, y opuestos
3.2.2 Ubicación de números negativos
3.2.3 Valor absoluto
3.2.4 Longitud en un gráfico de coordenadas
Resumen del Capítulo

Capítulo 4 Variables y razones

Sección 4.1
4.1.1 Introducción a las variables
4.1.2 Cómo escribir expresiones equivalentes
4.1.3 Uso de variables para generalizar
Sección 4.2
4.2.1 Aumento de formas bidimensionales
4.2.2 Aumento y reducción de figuras
4.2.3 Razones de aumento y reducción
4.2.4 Razones en otras situaciones
Resumen del Capítulo

Capítulo 5 Multiplicación de fracciones y área

Sección 5.1
5.1.1 Representación de la multiplicación de fracciones
5.1.2 Descripción de partes de partes
5.1.3 Cálculo de partes de partes
5.1.4 Multiplicación de números mixtos
Sección 5.2
5.2.1 Explicación de la multiplicación de decimales
5.2.2 Sentido numérico para la multiplicación de fracciones
Sección 5.3
5.3.1 Reorganización de áreas
5.3.2 Área de un paralelogramo
5.3.3 Área del triángulo
5.3.4 Área de trape cios
Resumen del Capítulo
Sección 5.4
Actividades de reflexión de mitad del curso

Capítulo 6 División y construcción de expresiones

Sección 6.1
6.1.1 División
6.1.2 Fracciones como problemas de división
6.1.3 Resolución de problemas con división
6 .1.4 Solución de problemas que resulten en división de fracciones
Sección 6.2
6.2.1 Orden de las operaciones
6.2.2 Área de una figura rectangular
6.2.3 Nombrar perímetros de azulejos algebraicos
6.2.4 Agrupación de términos sem ejantes
6.2.5 Evaluación de expresiones algebraicas
Resumen del Capítulo

Capítulo 7 Tasas y operaciones

Sección 7.1
7.1.1 Comparación de tasas
7.1.2 Comparación de tasas con tablas y gráficos
7.1.3 Tasas unitarias
Sección 7.2
7.2.1 Análisis de estrategias para dividir fracciones
7.2.2 Otra estrategia para la división
7.2.3 División con fracciones y decimales
7.2.4 División de fracciones como razones
Sección 7.3
7.3.1 Operaciones inversas
7.3.2 Propiedad distributiva
7.3.3 Propiedad distributiva y vocabulario de expresiones
7.3.4 Escritura de ecuaciones algebraicas y de desigualdades
Resumen del Capítulo

Capítulo 8 Estadística y ecuaciones multiplicativas

Sección 8.1
8.1.1 Medidas de tendencia central
8.1.2 Elección de la media o la mediana
8.1.3 Forma y dispersión
8.1.4 Diagramas de cajas y rango intercuartil
8.1.5 Comparación y selección de representaciones
Sección 8.2
8.2.1 Preguntas estadísticas
Sección 8.3
8.3.1 Cómo escribir ecuaciones multiplicativas
8.3.2 Distancia, tasa, y tiempo
8.3.3 Conversión de unidades
Resumen del Capítulo

Capítulo 9 Volumen y porcentajes

Sección 9.1
9.1.1 Volumen de un prisma rectangular
9.1.2 Desarrollos planos y área de superficie
Sección 9.2
9.2.1 Crecimiento multiplicativo y porcentajes
9.2.2 Composición y descomposición de porcentajes
9.2.3 Descuentos porcentuales
9.2.4 Interés simple y propinas
Resumen del Capítulo
Sección 9.3
9.3.1 Un último reto sobre porciones
9.3.2 Representación y predicción de patrones
9.3.3 Análisis de datos para identificar una te

Material de Punto s de comprobació

1. Área y perímetro de polígonos
2.Representaciones multiples de porciones
3. Multiplicación de fracciones y decimales
5. Orden de las operacion
Core Connections en español,
Curso 2

Capítulo 1 Introducción y p robabilidad

Sección 1.1
1.1.1 Búsqueda de características compartidas y únicas
1.1.2 Análisis de un j uego
1.1.3 Cómo hallar números d esconocidos
1.1.4 Investigación de una relación p
1.1.5 Investigación de patrones n uméricos 21 Sección 1.2
1.2.1 Introducción a la p robabilidad
1. 2.2 Investigación de probabilidades
1.2.3 Modificación del espacio m uestral
1.2.4 Fracciones expresadas como p orcentajes
1.2.5 Cómo reescribir f racciones
1.2.6 Suma de f racciones
1.2.7 Probabilidad c ompuesta
1.2.8 Resta de p robabilidades
Resumen del Capítulo

Capítulo 2 Suma de fracciones y e nteros

Sección 2.1
2.1.1 Conversión de fraccion es a decimales
2.1.2 Cómo reescribir decimales como f racciones
Sección 2.2
2.2.1 Combinación de números e nteros
2.2.2 Suma de números enteros y r acionales
2.2.3 Más suma de números enteros y racionales
2.2.4 La multiplicación como sumas r epetidas
2.2.5 Multiplicación de p orciones
2.2.6 Multiplicación de números mixtos
Sección 2.3
2.3.1 Cómo elegir una escala y graficar d atos
2.3.2 Más sobre la definición de e scalas de un gráfico
Resumen del Capítulo

Capítulo 3 Propiedades a ritméticas

Sección 3.1
3.1.1 Agrupación de expresiones
3.1.2 Identificación de términos en las expresiones
Sección 3.2
3.2.1 Resta de números e nteros
3.2.2 Conexión entre la suma y la resta
3.2.3 La multiplicación como sucesión de restas
3.2.4 Multiplicación de d ecimales
3.2.5 Suma, resta, multiplicación, y división de enteros
Sección 3.3
3.3.1 División con números r acionales
3.3.2 División con d ecimales
3.3.3 Propiedades a ritméticas
Resumen del Capítulo

Capítulo 4 Proporciones y e xpresiones

Sección4.1
4.1.1 Figuras semejantes
4.1.2 Dibujos a e scala
Sección 4.2
4.2 .1 Identificación de relaciones proporcionales
4.2.2 Relaciones proporcionales con tablas y gráficos
4.2.3 Tasa unitaria y ecuaciones proporcionales
4.2.4 Conexión de representaciones de relaciones proporcionales
Sección 4.3
4.3.1 Agrupación de términoss emejantes
4.3.2 Propiedad d istributiva
4.3.3 Simplificación con cero
Resumen del Capítulo

Capítulo 5 Probabilidad y problemas de p alabras

Sección 5.1
5.1.1 Relaciones entre la parte y el todo
5.1.2 Cálculo y uso de porcentajes
Sección 5.2
5.2.1 Juegos de probabilidades
5.2.2 Simulaciones de probabilidad es por computadora
5.2.3 Eventos compuestos independientes
5.2.4 Tablas de probabilidad
5.2.5 Árboles de probabilidad es
5.2.6 Eventos compuestos
Sección 5.3
5.3.1 Descripción de relaciones entre cantidades
5.3.2 Resolución de problemas de palabras
5.3.3 Estrategias para u sar el Proceso 5-D
5.3.4 Uso de vari ables para representar cantidades en problemas de palabras
5.3.5 Más sobre la resolución de problemas de palabras
Resumen del Capítulo
Sección 5.4
5.4 Actividades de reflexión de mitad del curso

Chapter 6: Solving Inequalities and Equations

Sección 6.1
6.1.1 Transformaciones rígidas
6.1.2 Transformaciones rígidas en un gráfico de coordenadas
6.1.3 Descripción de transformaciones
6.1.4 Uso de transformaciones rígidas
Sección 6.2
6.2.1 Multiplicación y dilatación
6.2.2 Dilatación y figuras semejantes
6.2.3 Identificación de figuras semejantes
6.2.4 Figuras semejantes y transformaciones
6.2.5 Trabajo con lados correspondientes
6.2.6 Resolución de problemas que incluyen figuras semejantes
Resumen del Capítulo

Chapter 7: Proportions and Percents

Sección 7.1
7.1.1 Gráficos circulares
7.1.2 Organización de datos en un diagrama de dispersión
7.1.3 Identificación y descripción de la asociación
Sección 7.2
7.2.1 y=mx+b Revisado
7.2.2 Pendiente
7.2.3 La pendiente en diferentes representaciones
7.2.4 Más acerca de las pendientes
7.2.5 Ecuaciones proporcionales
Sección 7.3
7.3.1 Empleo de las ecuaciones para hacer predicciones
7.3.2 Descripción completa de la asociación
7.3.3 Asociación entre variables categóricas
Resumen del Cap

Chapter 8: Statistics and Angle Relationships

Sección 8.1
8.1.1 Patrone s de crecimiento en tablas y gráficos
8.1.2 Interés compuesto
8.1.3 Crecimiento lineal y expon encial
Sección 8.2
8.2.1 Exponentes y notación científica
8.2.2 Reglas de exponentes
8.2.3 Exponentes negativos
8.2.4 Operaciones con notación científica
Sección 8.3
8.3.1 Funciones en gráficos y tablas
Resumen del Capítulo

Chapter 9: Circles and Volume

Sección 9.1
9.1.1 Relaciónes entre pares de ángulos de rectas paralelas
9.1.2 Cálculo de ángulos desconocidos de un triángulo
9.1.3 Ángulos exteriores de triángulos
9.1.4 ~ AA Semejanza de triángulos
Sección 9.2
9.2.1 Largo de los lados y triángulos
9.2.2 Teorema de Pitágoras
9.2.3 Entendiendo la raíz cuadrada
9.2.4 Números reales
9.2.5 Aplicaciones del Teorema de Pitágoras
9.2.6 Teorema de P itágoras en tres dimensiones
9.2.7 Comprobación de l Teorema de Pitágoras
Resumen del Capítulo

Capítulo 10 Área de superficie s y volumen

Sección 10.1
10.1.1 Raíces cúbicas
10.1.2 Área de la superficie y volumen de un cilindro
10.1.3 Volúmen es de conos y pirámides
10.1.4 Volumen de una esfera
10.1.5 Aplicaciones de l volumen
Resumen del Capítulo
10.2.1 Medida sindirectas
10.2.2 Cómo hallar incógnitas
10.2.3 Análisis de datos para identificar una tende

Material de Punto s de comprobació

1.Área y perímetro de polígonos
2.Representaciones multiples de porciones
3. Multiplicación de fracciones y decimales
5. Orden de las operaci
6. Representaciones múltiples de ecuaciones lineales
7. Resolución de ecuaciones con fracciones y decimales ( Mé todo de “rompe fracciones”)
8. Transformaciones
9. Diagramas de dispersión y asociación
Core Connections en español,
Curso 3

Capítulo 1 Resolución de prob

Sección 1.1
1.1.1 Interpretación de gráficos
1.1.2 Búsqueda y generalización de patrones
1.1.3 La caminata de álgebra
1.1.4 Recolección, organización y análisis de la información
Sección 1.2
1.2.1 Relaciones proporcionales con gráficas y tablas
1.2.2 Estrategias para resolver relaciones proporcionales
Resumen del Capítulo

Capítulo 2 Simplificación

Sección 2.1
2.1.1 Análisis de variables y de expresiones
2.1.2 Simplificación de expresiones combinando términos semejantes
2.1.3 Escritura de expresiones algebraicas
2.1.4 Uso del cero para simplificar expresiones algebraicas
2.1.5 Uso de azulejos algebraicos para simplificar expresiones algebraicas
2.1.6 Uso de azulejos algebraicos para comparar expresiones
2.1.7 Simplificación y registro del trabajo
2.1.8 Uso de azulejos algebraicos para resolver para x
2.1.9 Más ecuaciones para resolver
Resumen del Capítulo

Capítulo 3 Gráficos y ecuaciones

Sección 3.1
3.1.1 Extensión de patrones y búsqueda de reglas
3.1.2 Uso de tablas, gráficos y reglas para hacer predicciones
3.1.3 Uso de la calculadora gráfica e identificación de soluciones
3.1.4 Cómo terminar tablas y dibujar gráficos
3.1.5 Gráficos, tablas y reglas
3.1.6 Gráficos completas
3.1.7 Identificación de errores comunes en gráficos
Sección 3.2
3.2.1 Resolución de ecuaciones y revisión de soluciones
3.2.2 Cómo determinar el número de soluciones
3.2.3 Cómo resolver ecuaciones para resolver problemas
3.2.4 Más resolución de ecuaciones para resolver problemas
3.2.5 Ecuaciones de Propiedad distributiva
Resumen del Capítulo

Capítulo 4 Representaciones múltiples

Sección 4.1
4.1.1 Búsqueda de conexiones entre representaciones
4.1.2 Observación del crecimiento en distintas representaciones
4.1.3 Conexión entre reglas y gráficos lineales
4.1.4 y = mx + b
4.1.5 Verificación de las conexiones
4.1.6 Cómo graficar una línea sin una tabla x → y
4.1.7 Completando el red
Resumen del Capítulo

Capítulo 5 Sistemas de ecuaciones

Sección 5.1
5.1.1 Trabajo con ecuaciones de variables múltiples
5.1.2 Resolución de ecuaciones con fracciones
Sección 5.2
5.2.1 Introducción a sistemas de ecuaciones
5.2.2 Cómo escribir reglas para problemas de cuentos cortos
5.2.3 Resolución algebraica de sistemas de ecuaciones
5.2.4 Estrategia para resolver sistemas
Resumen del Capítulo
5.3 Actividades de reflejo de medio curso

Capítulo 6 Transformaciones y semejanza

Sección 6.1
6.1.1 Transformacion es rígidas
6.1.2 Transformaciones rígidas en un gráfico de coordenadas
6.1.3 Descripción de transformaciones
6.1.4 Uso de transformaciones rígidas
Sección 6.2
6.2.1 Multiplicación y dilatación
6.2.2 Dilatación y figuras semejantes
6.2.3 Identificación de figuras semejantes
6.2.4 Figuras semejantes y transformaciones
6.2.5 Trabajo con lados correspondientes
6.2.6 Resolución de problemas que incluyen figuras semejantes
Resumen del Capítulo

Capítulo 7 P endiente y asociación

Sección 7.1
7.1.1 Gráficos circulares
7.1.2 Organización de datos en un diagrama de dispersión
7.1.3 Identificación y descripción de la asociación
Sección 7.2
7.2.1 y = mx + b Revisado
7.2.2 Pendiente
7.2.3 La pendiente en diferentes representaciones
7.2.4 Más acerca de las pendientes
7.2.5 Ecuaciones proporcionales
Sección 7.3
7.3.1 Empleo de las ecuaciones para hacer predicciones
7.3.2 Descripción completa de la asociación
7.3.3 Asociación entre variables categóricas
Resumen del Capítulo

Capítulo 8 Exponentes y funciones

Sección 8.1
8.1.1 Patrone s de crecimiento en tablas y gráficos
8.1.2 Interés compuesto
8.1.3 Crecimiento lineal y exponencial
Sección 8.2
8.2.1 Exponentes y notación científica
8.2.2 Reglas de exponentes
8.2.3 Exponentes negativos
8.2.4 Operaciones con notación científica
Sección 8.3
8.3.1 Funciones en gráficos y tablas
Resumen del Capítulo

Capítulo 9 Ángulos y el Teorema de P itágoras

Sección 9.1
9.1.1 Relación es entre pares de ángulos de rectas paralelas
9.1.2 Cálculo de ángulos desconocidos de un triángulo
9.1.3 Ángulos exteriores de triángulos
9.1.4 ~ AA Semejanza de triángulos
Sección 9.2
9.2.1 Largo de los lados y triángulos
9.2.2 Teorema de Pitágoras
9.2.3 Entendiendo la raíz cuadrada
9.2.4 Números reales
9.2.5 Aplicaciones del Teorema de Pitágoras
9.2.6 Teorema de P itágoras en tres dimensiones
9.2.7 Comprobación del Teorema de Pitágoras
Resumen del Capítulo

Capítulo 10 Área de superficie s y volumen

Sección 10.1
10.1.1 Raíces cúbicas
10.1.2 Área de la superficie y volumen de un cilindro
10.1.3 Volúmenes de conos y pirámides
10.1.4 Volumen de una esfera
10.1.5 Aplicaciones del volumen
Resumen del Capítulo
10.2.1 Medida sindirectas
10.2.2 Cómo hallar incógnitas
10.2.3 Análisis de datos para identificar una tendencia

Material de Punto s de comprobación

1. Operaciones con fracciones negativas y decimales
2. Evaluación de expresiones y uso del Orden de las operaciones
3. Tasas unitarias y proporciones
4. Área y perímetro de círculos y figuras complejas
5. Resolución de ecuaciones
6. Representaciones múltiples de ecuaciones lineales
7. Resolución de ecuaciones con fracciones y decimales (Método de “rompe fracciones”)
8.Transformaciones
9. Diagramas de dispersión y asociación

Inspiring Connections
Course 1

Prelude

0.1.1

Who are my classmates?

0.1.2

How do I work collaboratively?

0.1.3

What questions can I ask?

0.1.4

How can I categorize my words?

0.1.5

How can I communicate my ideas?

0.1.6

How can the team build this together?

0.1.7

What do we need to work togethe

 

Chapter 1

1.1 Numbers and Data

1.1.1 How should data be placed on this line?

1.1.2 Where do these numbers belong on this line?

1.1.3 How can I use two lines to solve problems?

1.1.4 How can data be used to answer a question?

1.1.5 How are histograms helpful?

1.1.6 How else can data be displayed?

1.2 Shapes and Area,

1.2.1 How can I write equivalent expressions in area and perimeter?

1.2.2 What shapes make up the polygon?

1.2.3 How can I make it a rectangle?

1.3 Expressions

1.3.1 How can I describe it using symbols?

1.3.2 What are the parts of an expression?

1.3.3 How do I work with decimals?

1.3.4 How do I multiply multi-digit decimals?

1.3.5 How can I represent the arrangement?

Chapter 2

2.1 Ratio Language

2.1.1 How can I compare two quantities? 

2.1.2 How can I write ratios?

2.1.3 How can I see ratios in data representations?

2.2 Equivalent Ratios

2.2.1 How can I visualize ratios?

2.2.2 How can I see equivalent ratios in a table?

2.2.3 How can I see equivalent ratios in a double number line?

2.2.4 How can I see equivalent ratios in tape diagrams?

2.2.5  How can I use equivalent ratios?

2.2.6 What do these represent?

2.3 Measurement

2.3.1 What are the measurements?

2.3.2 What are the units?

2.3.3 How can I convert units

Chapter 3

3.1 Measures of Center 

3.1.1 How can I measure the center?

3.1.2 How else can I measure the center?

3.1.3 Which is the better measure of center?

3.1.4 What happens when I change the data?

3.2 Integers

3.2.1 What numbers do I see?

3.2.2 What number is this?

3.2.3 What does a number line say about a number?

3.2.4 How do I compare different types of numbers?

3.3 Absolute Value

3.3.1 How do I describe the location?

3.3.2 How far do I walk?

3.3.3 Which one is greater?

3.3.4 How do I communicate mathematically?

 

3.4 Coordinate Plane

3.4.1 How can you precisely indicate a location?

3.4.2 What is the correct order?

3.4.3bWhat symbol represents me?

Chapter 4

4.1 Fractions, Decimals, and Percents
4.1.1 How can I tell if the ratios are equal?
4.1.2 What does “percent” mean?
4.1.3 How can I convert a fraction?
4.1.4 How can I convert a percent?
4.1.5 How can I convert a decimal?

4.2 Percents 4.2.1 How can I show it?
4.2.2 What can I learn from the label?
4.2.3 Are the percents fair?
4.3 Unit Rates in Tables and Graphs 4.3.1 How can I compare rates?
4.3.2 Which rate is better?
4.3.3 Which deal is best?
4.3.4 What is the unit rate?
4.3.5 How can I use different data representations?

Chapter 5

5.1 Variation in Data
5.1.1 How do I ask a statistical question?
5.1.2 What does each representation say about the data?
5.1.3 What does the box in a box plot represent?
5.1.4 How else can I describe data?

5.2 Area
5.2.1 What is the height?
5.2.2 Can I reconfigure a parallelogram into a rectangle?
5.2.3 How do I calculate the area?
5.2.4 How many triangles do I need?
5.2.5 What is my perspective?
5.2.6 Is it fair to play by the rules?
5.2.7 What shapes do I see?

5.3 Fractions
5.3.1 How can I represent fraction multiplication?
5.3.2 How can I multiply fractions?
5.3.3 How can I multiply mixed numbers?

Chapter 6

6.1 Rules of Operations
6.1.1 What does it mean?
6.1.2 What do mathematicians call this?
6.1.3 How much should I ask for?
6.1.4 How can I write mathematical expressions?
6.1.5 How do mathematicians abbreviate?
6.1.6 In what order should I evaluate?

6.2 Multiples and Factors
6.2.1 When will they be the same?
6.2.2 What are multiples?
6.2.3 What do they have in common?
6.2.4 Who is your secret valentine?
6.2.5 How can I understand products?
6.2.6 How can I rewrite expressions?
6.2.7 Which method do I use?

Chapter 7

7.1 Whole Number and Decimal Division
7.1.1 How can I share equally?
7.1.2 Which strategy is the most efficient?
7.1.3 How can I write the number sentence?
7.1.4 How can I divide decimals?
7.1.5 How should the problem be arranged?

7.2 Fraction Division
7.2.1 What if the divisor is a fraction?
7.2.2 How many fit?
7.2.3 How can I visualize this?
7.2.4 What is common about this?
7.2.5 How can I use a Giant One?
7.2.6 Which method is most efficient?

Chapter 8

8.1. Algebra Tiles
8.1.1 What do these shapes represent?
8.1.2 What does a group of tiles represent?
8.1.3 What is an equivalent expression?
8.1.4 Which terms can be combined?
8.1.5 What do the numbers mean?
8.1.6 What can a variable represent?

8.2 Expressions
8.2.1 How can I count it?
8.2.2 What if the size of the pool is unknown?
8.2.3 How can I use an algebraic expression?

8.3 Equations and Inequalities
8.3.1 Which values make the equation true?
8.3.2 How can patterns be represented?
8.3.3 What is the equation?
8.3.4 How many could there be?

Chapter 9

9.1 Equations and Inequalities Continued
9.1.1 When is the statement true?
9.1.2 How do I undo that?
9.1.3 How can I visualize an equation?
9.1.4 How can I solve an equation?
9.1.5 How can I make the unknown known?
9.1.6 How can I include all the solutions?
9.1.7 Which method should I use?
9.2 Rate Problems
9.2.1 How much does rice cost?
9.2.2 How long will it take?
9.2.3 How can I compare them?
9.2.4 How long will the race take?
9.2.5 How can I represent the rate?

Chapter 10

10.1: Explorations and Investigations
10.1.1 How can I make 0?
10.1.2 What number properties pair well?
10.1.3 How can you place algebraic expressions on the number line?
10.1.4 How can I solve it?
10.1.5 What can you say about the sums of consecutive numbers?
10.2: Restaurant Math
10.2.1 How can you draw it to scale?
10.2.2 How can you calculate the cost?
10.2.3 What do portions have to do with proportions?
10.2.4 What markdown undoes a markup?

Chapter 11

11.1: Ratios and Proportions
11.1.1 How much food is there?
11.1.2 How much do we need?
11.1.3 How much is that?
11.1.4 How can I redesign the classroom?
11.2: The Number System
11.2.1 Can I determine all the right measurements?
11.2.2 How can I show my understanding?

Inspiring Connections
Course 2

Prelude

0.1.1 What do they have in common?

0.1.2 How can I effectively communicate with my team?

0.1.3 Is there another perspective?

0.1.4 How can I persevere through struggle?

0.1.5 How can I see this happening?

0.1.6 What patterns can I recognize?

0.1.7 What is the best strategy?

0.1.8 How does respect look?

Chapter 1

1.1 Proportions and Proportional Relationships
1.1.1 How can I determine the length?
1.1.2 How big is a million?
1.1.3 How can I predict the outcome?
1.1.4 What is your fair share?
1.1.5 How can I prove two ratios form a proportion?
1.1.6 What is the relationship between the numbers?
1.2 Integer Operations
1.2.1 How can I change temperatures?
1.2.2 How can I show my thinking?
1.2.3 How can adding zero help?
1.2.4 How can I multiply integers?
1.2.5 How can I divide integers?
1.2.6 How can I compose numbers?
1.2.7 What is My Number?
1.3 Proportions and Graphs
1.3.1 How can a graph tell a story?
1.3.2 How do graphs, scale, and proportions connect?

Chapter 2

2.1 Fraction and Decimal Conversions
2.1.1 How can I rewrite it?
2.1.2 How do I write it?
2.1.3 Which representations are equivalent?
2.2 Probability
2.2.1 Is it likely or unlikely?
2.2.2 How can I represent probability as a fraction, decimal, and percent?
2.2.3 How does probability work in real-world situations?
2.2.4 How can I predict the theoretical probability using experimental data?
2.3 Scale Drawings
2.3.1 How can I determine the distance?
2.3.2 How can I enlarge a shape?
2.3.3 Does that look right?
2.3.4 Is it a scaled copy?
2.3.5 What is the best scale?
2.4 Cross Sections
2.4.1 What do I see when I slice a three-dimensional object?
2.4.2 How are cross sections and volume related?

Chapter 3

3.1 Proportional Relationships
3.1.1 How does it grow?
3.1.2 How does the money grow?
3.1.3 Is this a proportional relationship?
3.1.4 How can I create a graph?
3.1.5 What do the points mean?
3.1.6 What connections can I make?
3.2 Data and Statistics: Using Samples to Make Predictions
3.2.1 What connections can I make?
3.2.2 Which sample is more accurate?
3.2.3 Does the sample represent the population?
3.2.4 How close is my sample?
3.2.5 How are the problems related?

Chapter 4

4.1 Multiple Representations of Proportional Relationships
4.1.1 How fast can I click?
4.1.2 How can I determine which grows faster?
4.1.3 How do I see the unit rate?
4.1.4 How can I write an equation?
4.1.5 What is the better deal?
4.1.6 What impact do I have?
4.1.7 How can I calculate values more efficiently?
4.1.8 How can I convert between different units of measurement?
4.1.9 How can I make the connections?
4.2 Circumference and Area of a Circle
4.2.1 How are they proportional?
4.2.2 How much space is inside?
4.2.3 What is the formula for the area of a circle?
4.2.4 How can the formula for the area of a circle help me?

Chapter 5

5.1 Probability
5.1.1 What are the chances?
5.1.2 How can I calculate the probability of more than one event?
5.1.3 What if there is more than one event?
5.1.4 What if there are more than two events?
5.1.5 How can I determine all of the outcomes?
5.1.6 What if it is more complicated?
5.2 Integer Operations Continued
5.2.1 How does each operation move points on a number line?
5.2.2 How can I show division?
5.2.3 How can I calculate it?
5.2.4 How can I check my guess?

Chapter 6

6.1 Data Distributions
6.1.1 Who is steadier?
6.1.2 How different are they?
6.1.3 How do they compare?
6.1.4 Who is more efficient?
6.1.5 How can I simulate a sample?
6.2 Numerical and Algebraic Expressions
6.2.1 How can I combine them?
6.2.2 How can I rewrite an expression?
6.2.3 How can I write an expression with negatives?
6.2.4 What does zero look like?
6.2.5 How does it move?
6.3 Equivalent Expressions
6.3.1 How can I group them?
6.3.2 Are they equivalent?
6.3.3 What are the connections?

Chapter 7

7.1 Operations With Rational Numbers
7.1.1 Will the amount increase or decrease?
7.1.2 Are differences and distance the same?
7.1.3 Can I add these?
7.2 Percent Change
7.2.1 Does this represent an increase or a decrease?
7.2.2 How does this change the total?
7.2.3 How is the money split?
7.2.4 Do I pay more?
7.3 Percents in the Real World
7.3.1 Is this good for business?
7.3.2 How much did it change?
7.3.3 Is this acceptable?
7.3.4 How are percents represented in expressions?
7.3.5 Which is easier, calculating with fractions or decimals?

Chapter 8

8.1 Multiplication and Division of Rational Numbers
8.1.1 Is the product positive or negative?
8.1.2 How are multiplication and division connected?
8.1.3 What is the relationship?
8.1.4 How can I divide?
8.1.5 How do I solve it?
8.2 Working With Expressions
8.2.1 Which is greater?
8.2.2 How can I record my work?
8.2.3 What happens when the comparison depends on x?

Chapter 9

9.1 Angle Relationships
9.1.1 How can I draw an angle?
9.1.2 How can I combine angles?
9.1.3 How can I calculate the measure of a missing angle?
9.2 Triangle Creation
9.2.1 How can I put angles and lengths together?
9.2.2 Will these lengths make a triangle?
9.2.3 How many triangles? 9.2.4 Can I construct it?
9.3 Volume and Surface Area
9.3.1 How much material do I need?
9.3.2 How do I calculate the surface area and volume?
9.3.3 How much will it hold?
9.3.4 What am I measuring?

Chapter 10

10.1: Explorations and Investigations
10.1.1 How can I make 0?
10.1.2 What number properties pair well?
10.1.3 How can you place algebraic expressions on the number line?
10.1.4 How can I solve it?
10.1.5 What can you say about the sums of consecutive numbers?
10.2: Restaurant Math
10.2.1 How can you draw it to scale?
10.2.2 How can you calculate the cost?
10.2.3 What do portions have to do with proportions?
10.2.4 What markdown undoes a markup?

Inspiring Connections
Course 3

Prelude

0.1.1 What can I learn from my classmates?
0.1.2 How can shapes move?
0.1.3 What does respect mean to me?
0.1.4 What story might this represent?
0.1.5 Do all cities value parks the same?
0.1.6 How can I contribute to my team?

Chapter 1

1.1 Data and Graphs
1.1.1 How can I represent data?
1.1.2 How can I use data to solve a problem?
1.1.3 Is the roller coaster safe?
1.1.4 Is there a relationship?
1.1.5 What is the relationship?

1.2 Introduction to Transformations
1.2.1 How can I move a figure on the coordinate plane?
1.2.2 How can I describe the steps precisely?
1.2.3 Is there another way?
1.3 Linear Relationships
1.3.1 How can I graph a proportional relationship?
1.3.2 How do they compare?
1.3.3 Can I graph myself?
1.3.4 How can I represent this with a graph?
1.3.5 How can I graph a linear relationship?

Chapter 2

2.1 Rigid Transformations
2.1.1 How can I describe it?
2.1.2 How does reflection affect coordinates?
2.1.3 What can I create?
2.2 Similarity
2.2.1 What if I multiply?
2.2.2 How do shapes change?
2.2.3 What can I say about dilated shapes?
2.2.4 Are they similar?
2.2.5 How can I move a shape on a coordinate plane?
2.3 Graphing Systems of Equations
2.3.1 Where do the lines cross?
2.3.2 Will different tile patterns ever have the same number of tiles?

Chapter 3

3.1 Trend Lines
3.1.1 Are these variables related?
3.1.2 Which line fits the data well?
3.1.3 How can this association be explained?
3.2 Solving Equations with Algebra Tiles
3.2.1 How can I represent an expression?
3.2.2 How can I rewrite an expression?
3.2.3 How can I compare two expressions?
3.2.4 How can I solve the equation?
3.3 Graphing Linear Equations
3.3.1 What is the rule?
3.3.2 How can I make a prediction?
3.3.3 What is a graph and how is it useful?
3.3.4 How should I graph?
3.3.5 What observations can I make about a graph?

Chapter 4

4.1 Exponents, Part 1
4.1.1 What is exponential growth?
4.1.2 How can you (re)write it?
4.1.3 How can notation help you make sense of exponential expressions?
4.1.4 Are there other exponent properties?
4.1.5 How can I prevent common exponential expression errors?
4.2 Solving Equations
4.2.1 How can I check my answer?
4.2.2 Is there always a solution?
4.2.3 How many solutions are there?
4.2.4 How can I solve complicated equations?
4.2.5 How can I write an equation to meet the criteria?
4.3 Exponents, Part 2
4.3.1 What if the exponent is not positive?
4.3.2 How do you know which exponent properties to use?

Chapter 5

5.1 Representations of a Line
5.1.1 What is the connection?
5.1.2 How can you show it?
5.1.3 How does it grow?
5.1.4 How is the growth represented?
5.1.5 How can I write the rule?
5.1.6 How can you make connections?
5.1.7 How can you use growth?
5.1.8 What are the connections?
5.2 Graphs & Equations of Systems
5.2.1 How can I change it to y = mx + b form?
5.2.2 How can I eliminate fractions and decimals in equations?
5.2.3 How do I change the line?
5.2.4 Is the intersection significant?
5.2.5 What is the equation?

Chapter 6

6.1 Solving Systems Algebraically
6.1.1 Where do the lines intersect?
6.1.2 When are they the same?
6.1.3 What if the equations are not in y = mx + b form?
6.1.4 How many solutions are there?
6.2 Slope & Rate of Change
6.2.1 What is the equation of the line?
6.2.2 How does y change with respect to x?
6.2.3 When is it the same?
6.2.4 What’s the point?
6.2.5 Can I connect rates to slopes?
6.3 Associations
6.3.1 What is the equation for a trend line?
6.3.2 How can I use an equation?
6.3.3 What if the data is not numerical?
6.3.4 Is there an association?

Chapter 7

7.1 Angles
7.1.1 How are the angles related?
7.1.2 Are there other congruent angles?
7.1.3 What about the angles in a triangle?
7.1.4 What if the angle is on the outside?
7.1.5 Can angles show similarity?
7.2 Right Triangle Theorem
7.2.1 Can I make a right triangle?
7.2.2 What is special about a right triangle?
7.2.3 How can I calculate the side length?
7.2.4 What kind of number is it?
7.2.5 How can I use the Right Triangle Theorem to Solve Problems?
7.2.6 How can I determine lengths in three dimensions?
7.2.7 How can I prove it?

Chapter 8

8.1 Introduction to Functions
8.1.1 How can you (de)code messages?
8.1.2 How can a graph tell a story?
8.1.3 What can you predict?
8.1.4 Which prediction is best?
8.1.5 How does the output change based on the input?
8.1.6 How do you see the relationship?
8.2 Characteristics of Functions
8.2.1 What is a function?
8.2.2 How can you describe the function?
8.2.3 How do I sketch it?
8.2.4 How many relationships are there?
8.3 Linear and Nonlinear Functions
8.3.1 Is it linear or nonlinear?
8.3.2 What clues do ordered pairs reveal about a relationship?
8.3.3 What other functions might you encounter?

Chapter 9

9.1 Volume
9.1.1 Given the volume of a cube, how long is the side?
9.1.2 What if the base is not a polygon?
9.1.3 What if the layers are not the same?
9.1.4 What if it is oblique?
9.1.5 What if it is a three-dimensional circle?
9.2 Scientific Notation
9.2.1 How can I write very large or very small numbers?
9.2.2 How do I compare very large numbers?
9.2.3 How do I multiply and divide numbers written in scientific notation?
9.2.4 How do I add and subtract numbers written in scientific notation?
9.2.5 How do I compute it?
9.3 Applications of Volume
9.3.1 What does a volume function look like?
9.3.2 What is the biggest cone?
9.3.3 How do all the items fit together?

Chapter 10

10.1 Explorations and Investigations
10.1.1 How close can I get?
10.1.2 Can you make them all?
10.1.3 How many triangles will there be?
10.1.4 What’s my angle?
10.1.5 Function, function, what’s your function?
10.1.6 Is it always true?
10.1.7 What’s right?
10.1.8 What’s the story?

Newsletter Archives

You are now leaving cpmstg.wpengine.com.

Did you want to leave cpmstg.wpengine.com?

I want to leave cpmstg.wpengine.com.

No, I want to stay on cpmstg.wpengine.com

Algebra Tiles Blue Icon

Algebra Tiles Session

  • Used throughout CPM middle and high school courses
  • Concrete, geometric representation of algebraic concepts.
  • Two-hour virtual session,
  •  Learn how students build their conceptual understanding of simplifying algebraic expressions
  • Solving equations using these tools.  
  • Determining perimeter,
  • Combining like terms,
  • Comparing expressions,
  • Solving equations
  • Use an area model to multiply polynomials,
  • Factor quadratics and other polynomials, and
  • Complete the square.
  • Support the transition from a concrete (manipulative) representation to an abstract model of mathematics..

Foundations for Implementation

This professional learning is designed for teachers as they begin their implementation of CPM. This series contains multiple components and is grounded in multiple active experiences delivered over the first year. This learning experience will encourage teachers to adjust their instructional practices, expand their content knowledge, and challenge their beliefs about teaching and learning. Teachers and leaders will gain first-hand experience with CPM with emphasis on what they will be teaching. Throughout this series educators will experience the mathematics, consider instructional practices, and learn about the classroom environment necessary for a successful implementation of CPM curriculum resources.

Page 2 of the Professional Learning Progression (PDF) describes all of the components of this learning event and the additional support available. Teachers new to a course, but have previously attended Foundations for Implementation, can choose to engage in the course Content Modules in the Professional Learning Portal rather than attending the entire series of learning events again.